login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033568
Second pentagonal numbers with odd index: a(n) = (2*n-1)*(3*n-1).
15
1, 2, 15, 40, 77, 126, 187, 260, 345, 442, 551, 672, 805, 950, 1107, 1276, 1457, 1650, 1855, 2072, 2301, 2542, 2795, 3060, 3337, 3626, 3927, 4240, 4565, 4902, 5251, 5612, 5985, 6370, 6767, 7176, 7597, 8030, 8475, 8932, 9401, 9882, 10375, 10880, 11397, 11926
OFFSET
0,2
COMMENTS
Sequence found by reading the segment (1, 2) together with the line (one of the diagonal axes) from 2, in the direction 2, 15, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
FORMULA
G.f.: (1-x+12*x^2)/(1-x)^3.
a(n) = a(n-1) + 12*n - 11 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
a(n) = 6*n^2 - 5*n + 1 = A051866(n) + 1. - Omar E. Pol, Jul 18 2012
E.g.f.: (1 + x + 6*x^2)*exp(x). - G. C. Greubel, Oct 12 2019
From Amiram Eldar, Feb 18 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + Pi/(2*sqrt(3)) + 2*log(2) - 3*log(3)/2.
Sum_{n>=0} (-1)^n/a(n) = 1 + (1/sqrt(3) - 1/2)*Pi - log(2). (End)
MAPLE
seq((2*n-1)*(3*n-1), n=0..50); # G. C. Greubel, Oct 12 2019
MATHEMATICA
Table[(2*n-1)*(3*n-1), {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *)
LinearRecurrence[{3, -3, 1}, {1, 2, 15}, 50] (* Ray Chandler, Dec 08 2011 *)
PROG
(PARI) a(n)=(2*n-1)*(3*n-1) \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [(2*n-1)*(3*n-1): n in [0..50]]; // G. C. Greubel, Oct 12 2019
(Sage) [(2*n-1)*(3*n-1) for n in range(50)] # G. C. Greubel, Oct 12 2019
(GAP) List([0..50], n-> (2*n-1)*(3*n-1)); # G. C. Greubel, Oct 12 2019
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Ray Chandler, Dec 08 2011
STATUS
approved