login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033569
a(n) = (2*n - 1)*(3*n + 1).
3
-1, 4, 21, 50, 91, 144, 209, 286, 375, 476, 589, 714, 851, 1000, 1161, 1334, 1519, 1716, 1925, 2146, 2379, 2624, 2881, 3150, 3431, 3724, 4029, 4346, 4675, 5016, 5369, 5734, 6111, 6500, 6901, 7314, 7739, 8176, 8625, 9086, 9559, 10044, 10541, 11050, 11571
OFFSET
0,2
COMMENTS
For n>0, a(n) is the sum of the numbers from 2n+2 to 4n. The last digit of a(n) corresponds to the last digit of the squares mod 10 (A008959). Binomial Transform of a(n) starts: -1, 3, 28, 124, 432, 1328, 3776, 10176, 26368, ... . - Wesley Ivan Hurt, Dec 06 2014
FORMULA
G.f.: (-1+7*x+6*x^2)/(1-x)^3. - Vincenzo Librandi, Jul 07 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: (-1+5*x+6*x^2)*e^x. - Robert Israel, Dec 07 2014
a(n) = A060747(n) * A016777(n). - Reinhard Zumkeller, Jul 05 2015
Sum_{n>=0} 1/a(n) = 2/5*(log(2)-1) -sqrt(3)*Pi/30 -3*log(3)/10 = -0.6337047... - R. J. Mathar, Apr 22 2024
MAPLE
A033569:=n->(2*n-1)*(3*n+1): seq(A033569(n), n=0..50); # Wesley Ivan Hurt, Dec 06 2014
MATHEMATICA
CoefficientList[Series[(-1+7*x+6*x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *)
PROG
(Magma) [(2*n-1)*(3*n+1): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012
(Haskell)
a033569 n = (2 * n - 1) * (3 * n + 1)
a033569_list = map a033569 [0..]
-- Reinhard Zumkeller, Jul 05 2015
(PARI) a(n)=(2*n-1)*(3*n+1) \\ Charles R Greathouse IV, Jun 17 2017
(Sage) [(2*n-1)*(3*n+1) for n in (0..50)] # G. C. Greubel, Apr 02 2019
(GAP) List([0..50], n-> (2*n-1)*(3*n+1)) # G. C. Greubel, Apr 02 2019
CROSSREFS
Cf. A008959, A060747, A016777, A259758 (subsequence).
Sequence in context: A042223 A317225 A273780 * A201446 A371311 A220772
KEYWORD
sign,easy
STATUS
approved