The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033569 a(n) = (2*n - 1)*(3*n + 1). 3
 -1, 4, 21, 50, 91, 144, 209, 286, 375, 476, 589, 714, 851, 1000, 1161, 1334, 1519, 1716, 1925, 2146, 2379, 2624, 2881, 3150, 3431, 3724, 4029, 4346, 4675, 5016, 5369, 5734, 6111, 6500, 6901, 7314, 7739, 8176, 8625, 9086, 9559, 10044, 10541, 11050, 11571 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n>0, a(n) is the sum of the numbers from 2n+2 to 4n. The last digit of a(n) corresponds to the last digit of the squares mod 10 (A008959). Binomial Transform of a(n) starts: -1, 3, 28, 124, 432, 1328, 3776, 10176, 26368, ... . - Wesley Ivan Hurt, Dec 06 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: (-1+7*x+6*x^2)/(1-x)^3. - Vincenzo Librandi, Jul 07 2012 a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 07 2012 E.g.f.: (-1+5*x+6*x^2)*e^x. - Robert Israel, Dec 07 2014 a(n) = A060747(n) * A016777(n). - Reinhard Zumkeller, Jul 05 2015 MAPLE A033569:=n->(2*n-1)*(3*n+1): seq(A033569(n), n=0..50); # Wesley Ivan Hurt, Dec 06 2014 MATHEMATICA CoefficientList[Series[(-1+7*x+6*x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *) PROG (MAGMA) [(2*n-1)*(3*n+1): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012 (Haskell) a033569 n = (2 * n - 1) * (3 * n + 1) a033569_list = map a033569 [0..] -- Reinhard Zumkeller, Jul 05 2015 (PARI) a(n)=(2*n-1)*(3*n+1) \\ Charles R Greathouse IV, Jun 17 2017 (Sage) [(2*n-1)*(3*n+1) for n in (0..50)] # G. C. Greubel, Apr 02 2019 (GAP) List([0..50], n-> (2*n-1)*(3*n+1)) # G. C. Greubel, Apr 02 2019 CROSSREFS Cf. A008959, A060747, A016777, A259758 (subsequence). Sequence in context: A042223 A317225 A273780 * A201446 A220772 A242135 Adjacent sequences:  A033566 A033567 A033568 * A033570 A033571 A033572 KEYWORD sign,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 12:54 EDT 2021. Contains 345164 sequences. (Running on oeis4.)