

A033570


Pentagonal numbers with odd index: a(n) = (2*n+1)*(3*n+1).


15



1, 12, 35, 70, 117, 176, 247, 330, 425, 532, 651, 782, 925, 1080, 1247, 1426, 1617, 1820, 2035, 2262, 2501, 2752, 3015, 3290, 3577, 3876, 4187, 4510, 4845, 5192, 5551, 5922, 6305, 6700, 7107, 7526, 7957, 8400, 8855, 9322, 9801, 10292, 10795, 11310, 11837
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

If Y is a 3subset of an 2*nset X then, for n>=4, a(n2) is the number of 4subsets of X having at least two elements in common with Y.  Milan Janjic, Dec 16 2007
Sequence found by reading the line (one of the diagonal axes) from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318.  Omar E. Pol, Sep 08 2011
If two independent real random variables, x and y, are distributed according to the same exponential distribution: pdf(x) = lambda * exp(lambda * x), lambda > 0, then the probability that 2 <= x/(n*y) < 3 is given by n/a(n) (for n>1).  Andres Cicuttin, Dec 11 2016
a(n) is the sum of 2*n+1 consecutive integers starting from 2*n+1.  Bruno Berselli, Jan 16 2018


LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Pentagonal Number
Wikipedia, Pentagonal number
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

G.f.: (1 + 9*x + 2*x^2)/(1x)^3.
a(n) = a(n1) + 12*n1 for n>0, a(0)=1.  Vincenzo Librandi, Nov 17 2010
a(n) = A000326(2*n+1) = A191967(2*n+1).  Reinhard Zumkeller, Jul 07 2012
a(n) = Sum_{i=1..2*(n+1)1} 4*(n+1)  2  i.  Wesley Ivan Hurt, Mar 18 2014


MAPLE

A033570:=n>(2*n+1)*(3*n+1); seq(A033570(n), n=0..40); # Wesley Ivan Hurt, Mar 18 2014


MATHEMATICA

LinearRecurrence[{3, 3, 1}, {1, 12, 35}, 45]
Table[(2 n + 1) (3 n + 1), {n, 0, 44}] (* or *)
CoefficientList[Series[(1 + 9 x + 2 x^2)/(1  x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Dec 12 2016 *)


PROG

(PARI) a(n)=(2*n+1)*(3*n+1) \\ Charles R Greathouse IV, Jun 11 2015
(MAGMA) [(2*n+1)*(3*n+1) : n in [0..60]]; // Wesley Ivan Hurt, Dec 11 2016


CROSSREFS

Cf. A000326, A001318, A033568, A049452, A049453, A191967.
Sequence in context: A077293 A053682 A280364 * A163661 A247893 A142074
Adjacent sequences: A033567 A033568 A033569 * A033571 A033572 A033573


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Ray Chandler, Dec 08 2011


STATUS

approved



