login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033570 Pentagonal numbers with odd index: a(n) = (2*n+1)*(3*n+1). 15
1, 12, 35, 70, 117, 176, 247, 330, 425, 532, 651, 782, 925, 1080, 1247, 1426, 1617, 1820, 2035, 2262, 2501, 2752, 3015, 3290, 3577, 3876, 4187, 4510, 4845, 5192, 5551, 5922, 6305, 6700, 7107, 7526, 7957, 8400, 8855, 9322, 9801, 10292, 10795, 11310, 11837 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

If Y is a 3-subset of an 2*n-set X then, for n>=4, a(n-2) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007

Sequence found by reading the line (one of the diagonal axes) from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011

If two independent real random variables, x and y, are distributed according to the same exponential distribution: pdf(x) = lambda * exp(-lambda * x), lambda > 0, then the probability that 2 <= x/(n*y) < 3 is given by n/a(n) (for n>1). - Andres Cicuttin, Dec 11 2016

a(n) is the sum of 2*n+1 consecutive integers starting from 2*n+1. - Bruno Berselli, Jan 16 2018

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10000

Eric Weisstein's World of Mathematics, Pentagonal Number

Wikipedia, Pentagonal number

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (1 + 9*x + 2*x^2)/(1-x)^3.

a(n) = a(n-1) + 12*n-1 for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010

a(n) = A000326(2*n+1) = A191967(2*n+1). - Reinhard Zumkeller, Jul 07 2012

a(n) = Sum_{i=1..2*(n+1)-1} 4*(n+1) - 2 - i. - Wesley Ivan Hurt, Mar 18 2014

MAPLE

A033570:=n->(2*n+1)*(3*n+1); seq(A033570(n), n=0..40); # Wesley Ivan Hurt, Mar 18 2014

MATHEMATICA

LinearRecurrence[{3, -3, 1}, {1, 12, 35}, 45]

Table[(2 n + 1) (3 n + 1), {n, 0, 44}] (* or *)

CoefficientList[Series[(1 + 9 x + 2 x^2)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Dec 12 2016 *)

PROG

(PARI) a(n)=(2*n+1)*(3*n+1) \\ Charles R Greathouse IV, Jun 11 2015

(MAGMA) [(2*n+1)*(3*n+1) : n in [0..60]]; // Wesley Ivan Hurt, Dec 11 2016

CROSSREFS

Cf. A000326, A001318, A033568, A049452, A049453, A191967.

Sequence in context: A077293 A053682 A280364 * A163661 A247893 A142074

Adjacent sequences:  A033567 A033568 A033569 * A033571 A033572 A033573

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Ray Chandler, Dec 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 18:19 EST 2018. Contains 318086 sequences. (Running on oeis4.)