login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033573
a(n) = (2*n+1)*(9*n+1).
1
1, 30, 95, 196, 333, 506, 715, 960, 1241, 1558, 1911, 2300, 2725, 3186, 3683, 4216, 4785, 5390, 6031, 6708, 7421, 8170, 8955, 9776, 10633, 11526, 12455, 13420, 14421, 15458, 16531, 17640, 18785, 19966, 21183, 22436, 23725, 25050, 26411, 27808, 29241, 30710, 32215, 33756, 35333
OFFSET
0,2
FORMULA
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 27*x + 8*x^2)/(1-x)^3.
E.g.f.: (1 + 29*x + 18*x^2)*exp(x). (End)
Sum 1/a(n) = -Psi(1/9)/7 -gamma/7 -2*log(2)/7 = 1.0634904644443440.. where gamma =A001620, Psi(1/9) = -A354636.
MAPLE
seq((2*n+1)*(9*n+1), n=0..50); # G. C. Greubel, Oct 12 2019
MATHEMATICA
Table[(2*n+1)*(9*n+1), {n, 0, 50}] (* G. C. Greubel, Oct 12 2019 *)
PROG
(PARI) a(n)=(2*n+1)*(9*n+1) \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [(2*n+1)*(9*n+1): n in [0..50]] # G. C. Greubel, Oct 12 2019
(Sage) [(2*n+1)*(9*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
(GAP) List([0..50], n-> (2*n+1)*(9*n+1)); # G. C. Greubel, Oct 12 2019
CROSSREFS
Sequence in context: A165133 A044217 A044598 * A035076 A308508 A096382
KEYWORD
nonn,easy
STATUS
approved