|
|
A033576
|
|
a(n) = (2*n+1)*(12*n+1).
|
|
1
|
|
|
1, 39, 125, 259, 441, 671, 949, 1275, 1649, 2071, 2541, 3059, 3625, 4239, 4901, 5611, 6369, 7175, 8029, 8931, 9881, 10879, 11925, 13019, 14161, 15351, 16589, 17875, 19209, 20591, 22021, 23499, 25025
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
From Colin Barker, Jun 10 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (1 + 36*x + 11*x^2)/(1-x)^3. (End)
a(n) = A005408(n) * A017533(n). - Wesley Ivan Hurt, Feb 02 2014
E.g.f.: (1 + 38*x + 24*x^2)*exp(x). - G. C. Greubel, Oct 12 2019
|
|
MAPLE
|
A033576:=n->(2*n+1)*(12*n+1); seq(A033576(n), n=0..50); # Wesley Ivan Hurt, Feb 02 2014
|
|
MATHEMATICA
|
Table[(2n+1)(12n+1), {n, 0, 50}] (* Harvey P. Dale, Mar 30 2011 *)
CoefficientList[Series[(1+36*x+11*x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *)
|
|
PROG
|
(Magma) [(2*n+1)*(12*n+1): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012
(PARI) a(n)=(2*n+1)*(12*n+1) \\ Charles R Greathouse IV, Jun 17 2017
(Sage) [(2*n+1)*(12*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
(GAP) List([0..50], n-> (2*n+1)*(12*n+1)); # G. C. Greubel, Oct 12 2019
|
|
CROSSREFS
|
Cf. A005408, A017533.
Sequence in context: A044290 A044671 A020266 * A082656 A072933 A118634
Adjacent sequences: A033573 A033574 A033575 * A033577 A033578 A033579
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|