

A033572


a(n) = (2*n+1)*(7*n+1).


4



1, 24, 75, 154, 261, 396, 559, 750, 969, 1216, 1491, 1794, 2125, 2484, 2871, 3286, 3729, 4200, 4699, 5226, 5781, 6364, 6975, 7614, 8281, 8976, 9699, 10450, 11229, 12036, 12871, 13734, 14625, 15544, 16491, 17466, 18469, 19500, 20559, 21646, 22761, 23904, 25075, 26274, 27501, 28756
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Sequence found by reading the line from 1, in the direction 1, 24,..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020.  Omar E. Pol, Sep 13 2011


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

a(n) = a(n1) + 28*n  5 for n>0, a(0)=1.  Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 21*x + 6*x^2)/(1x)^3.
E.g.f.: (1 + 23*x + 14*x^2)*exp(x). (End)


MAPLE

seq((2*n+1)*(7*n+1), n=0..50); # G. C. Greubel, Oct 12 2019


MATHEMATICA

Table[(2*n+1)*(7*n+1), {n, 0, 50}] (* G. C. Greubel, Oct 12 2019 *)


PROG

(PARI) a(n)=(2*n+1)*(7*n+1) \\ Charles R Greathouse IV, Jun 17 2017
(MAGMA) [(2*n+1)*(7*n+1): n in [0..50]] # G. C. Greubel, Oct 12 2019
(Sage) [(2*n+1)*(7*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
(GAP) List([0..50], n> (2*n+1)*(7*n+1)); # G. C. Greubel, Oct 12 2019


CROSSREFS

Bisection of A001106.
Sequence in context: A045249 A185940 A265424 * A233883 A291630 A195027
Adjacent sequences: A033569 A033570 A033571 * A033573 A033574 A033575


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

Terms a(35) onward added by G. C. Greubel, Oct 12 2019


STATUS

approved



