login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033572
a(n) = (2*n+1)*(7*n+1).
4
1, 24, 75, 154, 261, 396, 559, 750, 969, 1216, 1491, 1794, 2125, 2484, 2871, 3286, 3729, 4200, 4699, 5226, 5781, 6364, 6975, 7614, 8281, 8976, 9699, 10450, 11229, 12036, 12871, 13734, 14625, 15544, 16491, 17466, 18469, 19500, 20559, 21646, 22761, 23904, 25075, 26274, 27501, 28756
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 1, in the direction 1, 24,..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011
FORMULA
a(n) = a(n-1) + 28*n - 5 for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 21*x + 6*x^2)/(1-x)^3.
E.g.f.: (1 + 23*x + 14*x^2)*exp(x). (End)
Sum 1/a(n) = -gamma/5 -2*log(2)/5 -psi(1/7)/5 = 1.0800940432405839438217..., gamma=A001620, psi(1/7) = -A354627. - R. J. Mathar, May 07 2024
MAPLE
seq((2*n+1)*(7*n+1), n=0..50); # G. C. Greubel, Oct 12 2019
MATHEMATICA
Table[(2*n+1)*(7*n+1), {n, 0, 50}] (* G. C. Greubel, Oct 12 2019 *)
LinearRecurrence[{3, -3, 1}, {1, 24, 75}, 50] (* Harvey P. Dale, Apr 19 2023 *)
PROG
(PARI) a(n)=(2*n+1)*(7*n+1) \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [(2*n+1)*(7*n+1): n in [0..50]] # G. C. Greubel, Oct 12 2019
(Sage) [(2*n+1)*(7*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
(GAP) List([0..50], n-> (2*n+1)*(7*n+1)); # G. C. Greubel, Oct 12 2019
CROSSREFS
Bisection of A001106.
Sequence in context: A185940 A378065 A265424 * A233883 A291630 A195027
KEYWORD
nonn,easy
STATUS
approved