login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A185940 a(n) = 1 - 2^(n+1) + 3^(n+2). 1
24, 74, 228, 698, 2124, 6434, 19428, 58538, 176124, 529394, 1590228, 4774778, 14332524, 43013954, 129074628, 387289418, 1161999324, 3486260114, 10459304628, 31378962458, 94138984524, 282421147874, 847271832228, 2541832273898, 7625530376124, 22876658237234 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (6,-11,6).

FORMULA

a(n) = 1 - A000079(n+1) + A000244(n+2)

From Alexander R. Povolotsky, Jan 07 2011: (Start)

G.f.: 2*x*(12 - 35*x + 24*x^2) / (1 - 6*x + 11*x^2 - 6*x^3)

a(n+2) = -6*a(n) + 5*a(n+1)+2. (End)

a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3). - G. C. Greubel, Feb 25 2017

E.g.f.: exp(x) - 2*exp(2*x) + 9*exp(3*x) - 8. - G. C. Greubel, Jul 23 2017

MAPLE

A185940:=n->1-2^(n+1)+3^(n+2): seq(A185940(n), n=1..40); # Wesley Ivan Hurt, Jul 23 2017

MATHEMATICA

CoefficientList[Series[-2*x*(12 - 35*x + 24*x^2)/(-1 + 6*x - 11*x^2 + 6*x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{6, -11, 6}, {24, 74, 228}, 50] (* G. C. Greubel, Feb 25 2017 *)

PROG

(MAGMA) [1 - 2^(n+1) + 3^(n+2): n in [1..40]]; // Vincenzo Librandi, Apr 05 2011

(PARI) x='x+O('x^50); Vec(-2*x*(12 - 35*x + 24*x^2) / (-1 + 6*x - 11*x^2 + 6*x^3)) \\ G. C. Greubel, Feb 25 2017

CROSSREFS

Cf. A000079, A000244, A066280.

Sequence in context: A042132 A042134 A045249 * A265424 A033572 A233883

Adjacent sequences:  A185937 A185938 A185939 * A185941 A185942 A185943

KEYWORD

nonn,easy

AUTHOR

Amir H. Farrahi, Feb 06 2011

EXTENSIONS

Corrected and edited by Bruno Berselli, Apr 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 10:09 EDT 2021. Contains 345453 sequences. (Running on oeis4.)