login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233883
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11 (11 maximizes T(1,1))
8
24, 76, 76, 240, 300, 240, 760, 1224, 1224, 760, 2400, 5156, 6200, 5156, 2400, 7600, 22020, 33656, 33656, 22020, 7600, 24000, 95464, 178704, 251532, 178704, 95464, 24000, 76000, 415092, 1015656, 1768660, 1768660, 1015656, 415092, 76000, 240000
OFFSET
1,1
COMMENTS
Table starts
.....24.......76........240.........760..........2400...........7600
.....76......300.......1224........5156.........22020..........95464
....240.....1224.......6200.......33656........178704........1015656
....760.....5156......33656......251532.......1768660.......14111768
...2400....22020.....178704.....1768660......15013864......160334028
...7600....95464....1015656....14111768.....160334028.....2431002508
..24000...415092....5566176...103547288....1417225464....28822097624
..76000..1819604...32573400...858513368...16134545712...467398305988
.240000..7964808..181919416..6440961128..147047775280..5678281493816
.760000.35055940.1082482200.54554580804.1750029730452.96535463946148
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 10*a(n-2)
k=2: a(n) = 3*a(n-1) +19*a(n-2) -60*a(n-3) +8*a(n-4) +36*a(n-5) -12*a(n-6)
k=3: a(n) = 56*a(n-2) -819*a(n-4) +2791*a(n-6) -3096*a(n-8) +961*a(n-10) -84*a(n-12)
k=4: [order 29]
k=5: [order 52]
EXAMPLE
Some solutions for n=3 k=4
..0..1..2..1..0....1..2..1..2..1....0..2..2..0..0....1..0..1..2..1
..2..0..0..2..0....2..0..0..2..0....1..0..1..2..1....2..2..0..0..2
..0..1..2..1..2....0..1..2..1..2....2..2..0..2..0....1..0..1..2..1
..2..0..0..0..2....0..2..0..2..0....0..1..0..1..0....2..0..2..0..0
CROSSREFS
Sequence in context: A378065 A265424 A033572 * A291630 A195027 A325958
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 17 2013
STATUS
approved