OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number.
Wikipedia, Pentagonal number.
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
a(n) = n * A001651(n).
G.f.: x*(1+3*x+6*x^2+2*x^3)/((1+x)^2*(1-x)^3). - Bruno Berselli, Jul 09 2012
a(n) = A182079(3n). - Bruno Berselli, Jul 09 2012
From Amiram Eldar, Feb 18 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi/(4*sqrt(3)) + 9*log(3)/4 - 2*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/4 + 3*log(3)/4 - 2*log(2). (End)
MATHEMATICA
Table[n (6 n - 3 - (-1)^n)/4, {n, 0, 48}] (* Bruno Berselli, Jul 09 2012 *)
PROG
(Haskell)
a191967 n = n * a001651 n
(Magma) A001651:=func<n|(6*n-3-(-1)^n)/4>; [n*A001651(n): n in [0..48]]; // Bruno Berselli, Jul 09 2012
(PARI) a(n)=n\2*3*n+if(n%2, n, -n) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jul 07 2012
STATUS
approved