The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A191968 a(n) = Fibonacci(8n+5) mod Fibonacci(8n+1). 1
 29, 1364, 64079, 3010349, 141422324, 6643838879, 312119004989, 14662949395604, 688846502588399, 32361122672259149, 1520283919093591604, 71420983074726546239, 3355265920593054081629, 157626077284798815290324, 7405070366464951264563599, 347880681146567910619198829 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Index entries for linear recurrences with constant coefficients, signature (47,-1). FORMULA G.f.: x*( 29+x ) / ( 1-47*x+x^2 ). - R. J. Mathar, Nov 15 2011; adapted to offset by Bruno Berselli, Jun 29 2014 a(n) = 47*a(n-1) -a(n-2) for n>1. - Vincenzo Librandi, Jun 29 2014 a(n) = Lucas(8*n - 1) for n >= 1. - Ehren Metcalfe, Apr 04 2019 a(n) = ((47+21*sqrt(5))^(-n)*(-2^(1+n)*(85+38*sqrt(5)) + (65+29*sqrt(5))*(2207+987*sqrt(5))^n)) / (105+47*sqrt(5)). - Colin Barker, Apr 05 2019 MATHEMATICA Table[Mod[Fibonacci[(8*n + 5)] , Fibonacci[(8*n + 1)]], {n, 1, 16}] PROG (MAGMA) [Fibonacci(8*n+5) mod Fibonacci(8*n+1): n in [1..20]]; // Vincenzo Librandi, Jun 29 2014 (PARI) a(n)=([0, 1; -1, 47]^(n-1)*[29; 1364])[1, 1] \\ Charles R Greathouse IV, Jul 06 2017 (PARI) Vec(x*(29 + x) / (1 - 47*x + x^2) + O(x^20)) \\ Colin Barker, Apr 05 2019 CROSSREFS Cf. A000045, A000032. Sequence in context: A195740 A139192 A290022 * A049657 A091994 A126555 Adjacent sequences:  A191965 A191966 A191967 * A191969 A191970 A191971 KEYWORD nonn,easy AUTHOR Artur Jasinski, Nov 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 14:03 EST 2020. Contains 332078 sequences. (Running on oeis4.)