login
A091994
Numerator of I(n) = sqrt(10)*(Integral_{x=0 to 1/3} 1/(1+x^2)^(n+1/2) dx).
1
1, 29, 1403, 95115, 8298105, 885611805, 111797745795, 16298030927115, 2694941727973425, 498439798319375325, 101970858789466224075, 22865056868419298361675, 5576927510911134523293225
OFFSET
1,2
COMMENTS
The denominator is b(n) = 10^(n-1)*(2*n)!/(n!*2^n).
LINKS
EXAMPLE
The third term is 1403 since I(3) = 1403/1500.
MATHEMATICA
Table[ Sqrt[10]*10^(n - 1)*(2*n)!/(n!*2^n)*Integrate[1/(1 + x^2)^(n + 1/2), {x, 0, 1/3}], {n, 14}] (* Robert G. Wilson v, Apr 23 2004 *)
CROSSREFS
Sequence in context: A290022 A191968 A049657 * A126555 A028478 A370679
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Mar 17 2004
EXTENSIONS
Edited by Robert G. Wilson v, Apr 23 2004
STATUS
approved