login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091991
Minimal number of 1's that must be inserted into the binary representation of n to get a prime.
3
1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 4, 0, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 0, 2, 0, 1, 1, 3, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1, 3, 3, 0, 3, 0, 2, 1, 3, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 2, 1, 1, 0, 2, 1, 2, 0, 3, 1, 1, 2, 2, 0, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 0, 2
OFFSET
1,4
COMMENTS
Insertion here means that the new 1-bit must come somewhere right of the most significant 1-bit. - Antti Karttunen, Dec 15 2017
FORMULA
a(2*n) = a(4*n+1) + 1.
a(A005097(n)) = 1 - A010051(A005097(n)).
a(2^k)=A061712(k); a(2^k+1)=A061712(k-1)*(1-A010051(2^k+1));
a(2^k-1) = A000043(m+1) - k for A000043(m)<k<=A000043(m+1).
EXAMPLE
n = 25->'11001': A000040(16)=53->'110[1]01', therefore a(25)=1;
a(255)=a(2^8-1)=5, as 2^(8+5)-1=8191 is a Mersenne prime and 2^(8+i)-1 is not prime for i<5.
PROG
(PARI)
insert1bit(n, pos) = (((n>>pos)<<(1+pos))+(1<<pos)+bitand(n, (2^pos)-1));
binwidth(n) = { my(k=0); while(n, n>>=1; k++); k; };
A091991(n) = { if(1==n, return(1)); if(isprime(n), return(0)); if(!(n%2), return(1+A091991(1+n+n))); my(k, nexttries, prevtries = Set([n]), w = binwidth(n)-1); for(b=1, oo, nexttries = Set([]); for(t=1, length(prevtries), h = prevtries[t]; for(i=1, w, if(isprime(k=insert1bit(h, i)), return(b), nexttries = setunion(Set([k]), nexttries)))); prevtries = nexttries; w++); };
\\ Antti Karttunen, Dec 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 17 2004
STATUS
approved