login
A049657
a(n) = (F(8*n+3) - 2)/3, where F=A000045 (the Fibonacci sequence).
1
0, 29, 1393, 65472, 3075821, 144498145, 6788337024, 318907342013, 14981856737617, 703828359326016, 33064951031585165, 1553348870125176769, 72974331944851723008, 3428240252537905804637, 161054317537336721094961
OFFSET
0,2
FORMULA
G.f.: -x*(29+x) / ( (x-1)*(x^2-47*x+1) ).
MATHEMATICA
LinearRecurrence[{48, -48, 1}, {0, 29, 1393}, 50] (* or *) Table[( Fibonacci[8*n+3] - 2)/3, {n, 0, 30}] (* G. C. Greubel, Dec 02 2017 *)
PROG
(PARI) for(n=0, 30, print1((fibonacci(8*n+3) - 2)/3, ", ")) \\ G. C. Greubel, Dec 02 2017
(Magma) [(Fibonacci(8*n+3) - 2)/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017
CROSSREFS
Sequence in context: A139192 A290022 A191968 * A091994 A126555 A028478
KEYWORD
nonn,easy
EXTENSIONS
Description corrected by and more terms from Michael Somos
STATUS
approved