

A049657


a(n) = (F(8*n+3)  2)/3, where F=A000045 (the Fibonacci sequence).


1



0, 29, 1393, 65472, 3075821, 144498145, 6788337024, 318907342013, 14981856737617, 703828359326016, 33064951031585165, 1553348870125176769, 72974331944851723008, 3428240252537905804637, 161054317537336721094961
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..595
Index entries for linear recurrences with constant coefficients, signature (48,48,1).


FORMULA

G.f.: x*(29+x) / ( (x1)*(x^247*x+1) ).


MATHEMATICA

LinearRecurrence[{48, 48, 1}, {0, 29, 1393}, 50] (* or *) Table[( Fibonacci[8*n+3]  2)/3, {n, 0, 30}] (* G. C. Greubel, Dec 02 2017 *)


PROG

(PARI) for(n=0, 30, print1((fibonacci(8*n+3)  2)/3, ", ")) \\ G. C. Greubel, Dec 02 2017
(MAGMA) [(Fibonacci(8*n+3)  2)/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017


CROSSREFS

Sequence in context: A139192 A290022 A191968 * A091994 A126555 A028478
Adjacent sequences: A049654 A049655 A049656 * A049658 A049659 A049660


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling


EXTENSIONS

Description corrected by and more terms from Michael Somos


STATUS

approved



