login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280364 Number of 2 X 2 matrices with all elements in {0,...,n} with permanent = determinant^n. 2
0, 12, 35, 56, 99, 132, 195, 240, 323, 380, 483, 552, 675, 756, 899, 992, 1155, 1260, 1443, 1560, 1763, 1892, 2115, 2256, 2499, 2652, 2915, 3080, 3363, 3540, 3843, 4032, 4355, 4556, 4899, 5112, 5475, 5700, 6083, 6320, 6723, 6972, 7395, 7656, 8099, 8372, 8835, 9120, 9603, 9900, 10403 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..995

FORMULA

a(n-1) = (((-2*(n-1)-1)*a(n-1))/(2*(n-1)-1)) + 8*(n-1)^2 + 10*(n-1) + 3 for n>=2, with a(0)=0.

Conjectures from Colin Barker, Jan 01 2017: (Start)

a(n) = 4*n^2 + 8*n + 3 for n>0 and even.

a(n) = 4*n^2 + 6*n + 2 for n odd.

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.

G.f.: x*(12 + 23*x - 3*x^2 - 3*x^3 + 3*x^4) / ((1 - x)^3*(1 + x)^2).

(End)

EXAMPLE

For n=2, the matrices are [0,0,0,0], [0,0,0,1], [0,0,0,2], [0,0,1,0], [0,0,1,1], [0,0,1,2], [0,0,2,0], [0,0,2,1], [0,0,2,2], [0,1,0,0], [0,1,0,1], [0,1,0,2], [0,1,1,0], [0,1,1,1], [0,1,1,2], [0,2,0,0], [0,2,0,1], [0,2,0,2], [1,0,0,0], [1,0,0,1], [1,0,1,0], [1,0,1,1], [1,0,2,0], [1,0,2,1], [1,1,0,0], [1,1,0,1], [1,1,1,0], [1,2,0,0], [1,2,0,1], [2,0,0,0], [2,0,1,0], [2,0,2,0], [2,1,0,0], [2,1,1,0], [2,2,0,0].

Here each of these matrices M is defined as  M=[a,b,c,d], where a=M[1][1], b=M[1][2], c=M[2][1], d=M[2][2]. There are 35 possibilities. So for n=2, a(n)=35.

MATHEMATICA

CoefficientList[Series[x (12 + 23 x - 3 x^2 - 3 x^3 + 3 x^4)/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* Michael De Vlieger, Jan 01 2017 *)

PROG

(Python)

def t(n):

    s=0

    for a in range(0, n+1):

        for b in range(0, n+1):

            for c in range(0, n+1):

                for d in range(0, n+1):

                    if (a*d-b*c)**n==(a*d+b*c):

                        s+=1

    return s

for i in range(0, 51):

    print str(i)+" "+str(t(i))

(Python)

def a(n):

    if n==2:

        return 12

    return (((-2*(n-1)-1)*a(n-1))/(2*(n-1)-1))+8*(n-1)**2+10*(n-1)+3

for i in range(2, 1001):

    print str(i)+" "+str(a(i))

CROSSREFS

Cf. A280344 (Number of 2 X 2 matrices with all elements in {0,...,n} with determinant = permanent^n).

Sequence in context: A088596 A077293 A053682 * A033570 A163661 A247893

Adjacent sequences:  A280361 A280362 A280363 * A280365 A280366 A280367

KEYWORD

nonn

AUTHOR

Indranil Ghosh, Jan 01 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 08:08 EDT 2021. Contains 343836 sequences. (Running on oeis4.)