login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A280344
Number of 2 X 2 matrices with all elements in {0,...,n} with determinant = permanent^n.
2
0, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372, 8742, 9120, 9506, 9900, 10302
OFFSET
0,2
COMMENTS
For n>0, a(n) is the perimeter of a primitive Pythagorean triangle. - Torlach Rush, Jul 11 2019
LINKS
FORMULA
a(0) = A002939(0) = 0; a(n) = A002939(n+1), for n>=1.
a(n) = (((n-2)*a(n-1))/(n-4)) - (6*(3*(n-1)+1)/(n-4)) for n>=4.
Conjectures from Colin Barker, Jan 01 2017: (Start)
a(n) = 2 + 6*n + 4*n^2 for n>0.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: 2*x*(6 - 3*x + x^2) / (1 - x)^3.
(End)
From Torlach Rush, Jul 11 2019: (Start)
a(n) = (2*n+1)*(2*n+2), n>0.
a(n) = 2*((n+1)^2 + ((n+1)*n)), n>0.
(End)
MATHEMATICA
Table[Boole[n != 0] 2 # (2 # - 1) &[n + 1], {n, 0, 50}] (* or *)
CoefficientList[Series[2 x (6 - 3 x + x^2)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Jan 01 2017 *)
PROG
(Python)
def t(n):
s=0
for a in range(0, n+1):
for b in range(0, n+1):
for c in range(0, n+1):
for d in range(0, n+1):
if (a*d-b*c)==(a*d+b*c)**n:
s+=1
return s
for i in range(0, 41):
print str(i)+" "+str(t(i))
CROSSREFS
Same as both A002939 and A118239 without A002939(1) = 2.
Sequence in context: A111396 A080385 A120090 * A286497 A086830 A084699
KEYWORD
nonn
AUTHOR
Indranil Ghosh, Jan 01 2017
STATUS
approved