login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120090
Numbers whose square is the perimeter of a primitive Pythagorean triangle.
3
12, 30, 56, 90, 132, 154, 182, 208, 234, 240, 306, 340, 374, 380, 408, 418, 456, 462, 494, 546, 552, 598, 644, 650, 690, 700, 736, 756, 800, 850, 864, 870, 918, 928, 986, 992, 1026, 1044, 1054, 1102, 1116, 1122, 1160, 1178, 1240, 1254, 1260, 1302, 1320
OFFSET
1,1
COMMENTS
a(n) = sqrt(A120089).
FORMULA
a(n) = 2*u*v, where u=sqrt(j/2) and v=sqrt(j+k) {for coprime pairs(j,k) j>k with odd k such that pairs (u,v) are coprime with v odd}.
MAPLE
isA024364 := proc(an) local r::integer, s::integer ; for r from floor((an/4)^(1/2)) to floor((an/2)^(1/2)) do for s from r-1 to 1 by -2 do if 2*r*(r+s) = an and gcd(r, s) < 2 then RETURN(true) ; fi ; if 2*r*(r+s) < an then break ; fi ; od ; od : RETURN(false) ; end : for n from 2 to 1200 do if isA024364(n^2) then printf("%d, ", n) ; fi ; od ; # R. J. Mathar, Jun 08 2006
MATHEMATICA
isA024364[an_] := Module[{r, s}, For[ r = Floor[(an/4)^(1/2)], r <= Floor[(an/2)^(1/2)], r++, For[s = r - 1, s >= 1, s -= 2, If[2 r (r + s) == an && GCD[r, s] < 2, Return[True]]; If[2 r (r + s) < an, Break[]]]]; Return[False]];
Select[Range[2, 2000], If[isA024364[#^2], Print[#]; True, False]&] (* Jean-François Alcover, May 24 2024, after R. J. Mathar *)
CROSSREFS
Sequence in context: A131874 A111396 A080385 * A280344 A286497 A086830
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Jun 07 2006
EXTENSIONS
Corrected and extended by R. J. Mathar, Jun 08 2006
STATUS
approved