OFFSET
0,2
COMMENTS
From Wolfdieter Lang, Jul 17 2013: (Start)
The numerators are given in A120086.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..440
FORMULA
a(n) = denominator(r(n)), with r(n) = [x^n](1 - 2*x/5 + 2*Sum_{k >= 0}(B(2*k)/((k+2)*(2*k)!))*x^(2*k) ), |x| < 2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator(4*B(n)/((n+4)*n!), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). From D(4,x) read as o.g.f. _ Wolfdieter Lang, Jul 17 2013
EXAMPLE
Rationals r(n): [1, -2/5, 1/18, 0, -1/1440, 0, 1/75600, 0, -1/3628800, 0, 1/167650560, 0, -691/5230697472000, ...].
MATHEMATICA
Table[Denominator[4*BernoulliB[n]/((n+4)*n!)], {n, 0, 50}] (* G. C. Greubel, May 02 2023 *)
PROG
(Magma) [Denominator(4*(n+1)*(n+2)*(n+3)*Bernoulli(n)/Factorial(n+4)): n in [0..50]]; // G. C. Greubel, May 02 2023
(SageMath) [denominator(4*(n+1)*(n+2)*(n+3)*bernoulli(n)/factorial(n+4)) for n in range(51)] # G. C. Greubel, May 02 2023
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 20 2006
STATUS
approved