login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351890
Primes p such that tau(p - 1) - 1 = tau(p - 2) = tau(p - 3), where tau(k) is the number of divisors of k (A000005).
0
5, 17, 65537, 9632244737, 20892967937, 127831991297, 149255504897, 159667373057, 351108391937, 542497063937, 1650957730817, 2270398022657, 2322380932097, 2747956028417, 2888694547457, 3516735087617, 6029264167937, 6122338640897, 6705696695297, 11125266727937
OFFSET
1,1
COMMENTS
Corresponding values of tau(a(n)-1): 3, 5, 17, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, ...
Corresponding values of tau(a(n)-2) = tau(a(n)-3): 2, 4, 16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, ...
Quadruples of [tau(a(n)-3), tau(a(n)-2), tau(a(n)-1), tau(a(n))]: [2, 2, 3, 2], [4, 4, 5, 2], [16, 16, 17, 2], [32, 32, 33, 2], [32, 32, 33, 2], [32, 32, 33, 2], [32, 32, 33, 2], [32, 32, 33, 2], [32, 32, 33, 2], ...
Quadruple [32, 32, 33, 2] holds for all 128 terms 65537 < a(n) < 10^15.
Number p-1 is a perfect square as its number of divisors is odd.
The first 3 terms are Fermat primes from A019434.
Term 103565955613697 is the smallest primes p such that tau(p - 1) - 1 = tau(p - 2) = tau(p - 3) = tau(p - 4).
EXAMPLE
Quadruple of [tau(65534), tau(65535), tau(65536), tau(65537)]: [16, 16, 17, 2].
PROG
(Magma) [m: m in [4..10^6] | IsPrime(m) and #Divisors(m - 1) eq #Divisors(m - 2) + 1 and #Divisors(m - 2) eq #Divisors(m - 3)]
CROSSREFS
Subsequence of A347078.
Cf. A000005 (tau), A019434.
Sequence in context: A062223 A363759 A116911 * A097491 A120087 A353690
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 03 2022
STATUS
approved