login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097491
Primes which are two greater than the terms of A079164.
5
5, 17, 21800053277, 72409291238312731227527, 86984485062381462583582279727, 21679097826151232817152558557032490897727272048343000297777, 107025222275017133994159705286756083545279583250537082122450588876727
OFFSET
1,1
COMMENTS
A097491(8) = 2948...794027 has 76 digits and A097491(9) = 152400...802327 has 288 digits. - Hartmut F. W. Hoft, Apr 27 2021
LINKS
EXAMPLE
a(3) = 21800053277 = A079164(17) + 2 = 3*5*5*7*11*13*17*19*29*31 + 2. - Hartmut F. W. Hoft, Apr 27 2021
MATHEMATICA
step[{list_, q_}] := Module[{p=NextPrime[q]}, {Join[list, If[PrimeQ[p+2], {{p, p+2}}, {}]], p}]
pairList[n_] := First[NestWhile[step, {{{3, 5}}, 3}, Length[First[step[#]]]<=n&]]
a079164[n_] := Rest[FoldList[Times, 1, Take[Flatten[pairList[n]], n]]]
a097491[n_] := Select[Map[#+2&, a079164[n]], PrimeQ]
a097491[39] (* Hartmut F. W. Hoft, Apr 27 2021 *)
PROG
(PARI) ft(n) = p=1; for(x=1, n, p*=twinl(x); if(isprime(p+2), print1(p+2", ")); p*=twinu(x); if(isprime(p+2), print1(p+2", ")))
twinl(n) = { local(c, x); c=0; x=1; while(c<n, if(isprime(prime(x)+2), c++); x++; ); return(prime(x-1)) }
twinu(n) = { local(c, x); c=0; x=1; while(c<n, if(isprime(prime(x)+2), c++); x++; ); return(prime(x)) }
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Aug 24 2004
EXTENSIONS
Edited by Don Reble, Apr 16 2007
Name corrected by Hartmut F. W. Hoft, Apr 27 2021
STATUS
approved