OFFSET
0,2
COMMENTS
The denominators are given in A227574.
For general remarks on the e.g.f.s D(n,x), the Debye function with index n = 1, 2, 3, ... see the W. Lang link under A120080.
D(4,x) := (4/x^4)*int(t^4/(exp(x) - 1), t=0..x) is the e.g.f. of the rationals r(4,n) = 4*B(n)/(n+4), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n).
See the Abramowitz-Stegun reference for the integral appearing in
D(4,x) and a series expansion valid for |x| < 2*Pi.
Initially coincides with A227570, A176327, A164555 and A027641 for n <> 1. - R. J. Mathar, Jul 19 2013
Differs from these sequences for n = 1328, 2660, 2828, 2880... - Andrey Zabolotskiy, Dec 08 2023
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 998, equ. 27.1.1 for n=4, with a factor (x^4)/4 extracted.
FORMULA
a(n) = numerator(4*B(n)/(n+4)), n >= 0, with the Bernoulli numbers B(n).
EXAMPLE
The rationals r(4,n), n=0..15 are: 1, -2/5, 1/9, 0, -1/60, 0, 1/105, 0, -1/90, 0, 5/231, 0, -691/10920, 0, 7/27, 0.
MATHEMATICA
A227573[n_]:=Numerator[4BernoulliB[n]/(n+4)];
Array[A227573, 50, 0] (* Paolo Xausa, Dec 08 2023 *)
PROG
(Sage)
print([(bernoulli(n)*4/(n+4)).numerator() for n in range(30)]) # Andrey Zabolotskiy, Dec 08 2023
CROSSREFS
KEYWORD
sign,easy,frac
AUTHOR
Wolfdieter Lang, Jul 17 2013
STATUS
approved