login
A227576
Numbers k such that F(3*k)/(2*F(k)) is prime, where F(m) is the m-th Fibonacci number.
1
5, 7, 11, 13, 17, 31, 37, 41, 67, 107, 151, 257, 349, 457, 787, 911, 1289, 1627, 3271, 8233, 13163, 14551, 31517, 55579, 103289
OFFSET
1,1
COMMENTS
All terms are primes. Conjecture: this sequence is infinite.
EXAMPLE
For n = 5 we have F(3*5)/(2*F(5)) = F(15)/(2*5) = 610/10 = 61 is prime.
MATHEMATICA
Select[Range[1000], PrimeQ[Fibonacci[3*#]/Fibonacci[#]/2] &] (* Vaclav Kotesovec, Jul 18 2013 *)
PROG
(PARI) forprime(p=5, 1e4, if(ispseudoprime(t=fibonacci(3*p)/fibonacci(p) /2), print1(p", "))) \\ Charles R Greathouse IV, Jul 16 2013
(PFGW) ABC2 F(3*$a)/2/F($a)
a: primes from 5 to 25000
// Charles R Greathouse IV, Jul 16 2013
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Thomas Ordowski, Jul 16 2013
EXTENSIONS
a(6)-a(22) from Charles R Greathouse IV, Jul 16 2013
a(23) from Vaclav Kotesovec, Jul 18 2013
a(24) from Charles R Greathouse IV, Jul 18 2013
a(25) from Michael S. Branicky, Nov 06 2024
STATUS
approved