login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255229
Integers n such that n^2 - 1 is the difference of the squares of twin primes.
0
5, 7, 11, 13, 17, 31, 41, 43, 49, 77, 83, 101, 109, 119, 133, 179, 203, 263, 277, 283, 307, 311, 329, 353, 377, 407, 413, 419, 431, 437, 463, 473, 493, 577, 581, 619, 629, 703, 757, 791, 811, 907, 911, 913, 991, 1001, 1037, 1061, 1103, 1121, 1249, 1289, 1337, 1373, 1441, 1457, 1487, 1523, 1597, 1651, 1781
OFFSET
1,1
EXAMPLE
31^2 - 1 = 241^2 - 239^2, and (239, 241) is a twin prime pair, so 31 is in the sequence.
MATHEMATICA
lst={}; f[n_]:=Sqrt[Prime[n]^2-NextPrime[Prime[n], -1]^2+1];
Do[If[Prime[n]-NextPrime[Prime[n], -1]==2&&IntegerQ[f[n]], AppendTo[lst, f[n]]], {n, 3, 10^5}]; lst (* Ivan N. Ianakiev, Mar 30 2015 *)
PROG
(PARI) lista(nn) = {forprime(p=3, nn, q = precprime(p-1); if (((p-q) == 2) && issquare(d=p^2-q^2+1), print1(sqrtint(d), ", ")); ); } \\ Michel Marcus, Feb 18 2015
CROSSREFS
Cf. A088486 (corresponding lesser twin primes), A111046.
Sequence in context: A371566 A227576 A114262 * A230217 A317250 A007529
KEYWORD
nonn
AUTHOR
Neri Gionata, Feb 18 2015
STATUS
approved