login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371566
Primes p such that x^5 - x^4 - x^3 - x^2 - x - 1 is irreducible (mod p).
3
5, 7, 11, 13, 17, 31, 37, 41, 53, 79, 107, 199, 233, 239, 311, 331, 337, 389, 463, 523, 541, 547, 557, 563, 577, 677, 769, 853, 937, 971, 1009, 1021, 1033, 1049, 1061, 1201, 1237, 1291, 1307, 1361, 1427, 1453, 1543, 1657, 1699, 1723, 1747, 1753, 1759, 1787, 1801, 1811, 1861, 1877, 1997, 1999
OFFSET
1,1
LINKS
MAPLE
P:= x^5 - x^4 - x^3 - x^2 - x - 1:
select(p -> Irreduc(P) mod p, [seq(ithprime(i), i=1..1000)]); # Robert Israel, Mar 13 2024
MATHEMATICA
P = x^5 - x^4 - x^3 - x^2 - x - 1;
Select[Prime[Range[1000]], IrreduciblePolynomialQ[P, Modulus -> #]&] (* Jean-François Alcover, Mar 24 2024, after Robert Israel *)
PROG
(Python)
from itertools import islice
from sympy import Poly, nextprime
from sympy.abc import x
def A371566_gen(): # generator of terms
p = 2
while True:
if Poly(x*(x*(x*(x*(x-1)-1)-1)-1)-1, x, modulus=p).is_irreducible:
yield p
p = nextprime(p)
A371566_list = list(islice(A371566_gen(), 20)) # Chai Wah Wu, Mar 14 2024
(PARI) a371566(upto) = forprime (p=2, upto, my(f=factormod(x^5 - x^4 - x^3 - x^2 - x - 1, p)); if(#f[, 1]==1, print1(p, ", "))) \\ Hugo Pfoertner, Mar 22 2024
CROSSREFS
Contained in, but not equal to, A106309. Cf. A370830.
Sequence in context: A109416 A132170 A106309 * A227576 A114262 A255229
KEYWORD
nonn
AUTHOR
Robert Israel, Mar 27 2024
STATUS
approved