login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371569
Primes p such that for all initial conditions (x(0),x(1),x(2),x(3),x(4)) in [0..p-1]^5 except [0,0,0,0,0], the 5-step recurrence x(k) = x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5) (mod p) has the same period, but x^5 - x^4 - x^3 - x^2 - x - 1 is reducible (mod p).
1
4259, 61643, 94307, 110063, 118171, 348149, 1037903, 1872587, 2149403, 2331859, 2450807, 2490263, 2500847, 2521823, 2534659, 2772179, 2788367, 2789939, 3271883, 3399707, 3550751, 3577487, 3640859, 3861899, 3904309, 4016219, 4063211, 4236719, 4245239, 4368739, 4441007, 4542779, 5033477, 5446283
OFFSET
1,1
COMMENTS
Terms of A106309 that are not in A371566.
In each of the first 2000 terms, x^5 - x^4 - x^3 - x^2 - x - 1 splits into linear factors (mod p). Are there any where it does not?
EXAMPLE
a(3) = 94307 is a term because 94307 is prime, z^5 - z^4 - z^3 - z^2 - z - 1 = (z + 11827)*(z + 78583)*(z + 54610)*(z + 14536)*(z + 29057) (mod 94307), and the recurrence has period 47153 for all initial conditions except (0,0,0,0,0), as -11827, -78583, -54610, -14536, and -29057 all have multiplicative order 47153 (mod 94307).
MAPLE
filter:= proc(p) local Q, q, F, i, z, d, k, kp, G, alpha;
if not isprime(p) then return false fi;
Q:= z^5 - z^4 - z^3 - z^2 - z - 1;
if Irreduc(Q) mod p then return false fi;
F:= (Factors(Q) mod p)[2];
if ormap(t -> t[2]>1, F) then return false fi;
for i from 1 to nops(F) do
q:= F[i][1];
d:= degree(q);
if d = 1 then kp:= NumberTheory:-MultiplicativeOrder(p+solve(q, z), p);
else
G:= GF(p, d, q);
alpha:= G:-ConvertIn(z);
kp:= G:-order(alpha);
fi;
if i = 1 then k:= kp
elif kp <> k then return false
fi;
od;
true
end proc:
select(filter, [seq(i, i=3 .. 10^7, 2)]);
CROSSREFS
Sequence in context: A138399 A224725 A252030 * A023346 A231195 A342565
KEYWORD
nonn
AUTHOR
Robert Israel, Mar 28 2024
STATUS
approved