login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371567
Array read by downward antidiagonals: A(n,k) = A(n-1,k+1) + (k+1)*Sum_{j=0..k} A(n-1,j) with A(0,k) = k+1, n >= 0, k >= 0.
1
1, 2, 3, 3, 9, 12, 4, 22, 46, 58, 5, 45, 147, 263, 321, 6, 81, 397, 1012, 1654, 1975, 7, 133, 933, 3341, 7340, 11290, 13265, 8, 204, 1962, 9637, 28333, 56278, 82808, 96073, 9, 297, 3776, 24758, 96313, 246905, 455534, 647680, 743753, 10, 415, 6767, 57678, 292092, 961897, 2227689, 3882510, 5370016, 6113769
OFFSET
0,2
FORMULA
Conjecture: A(n,0) = A258173(n+1). - Mikhail Kurkov, Oct 27 2024
A(n,k) = A(n,k-1) + (A(n,k-1) - A(n-1,k))/k + k*A(n-1,k) + A(n-1,k+1) with A(n,0) = A(n-1,0) + A(n-1,1), A(0,k) = k+1. - Mikhail Kurkov, Nov 24 2024
EXAMPLE
Array begins:
==============================================================
n\k| 0 1 2 3 4 5 6 ...
---+----------------------------------------------------------
0 | 1 2 3 4 5 6 7 ...
1 | 3 9 22 45 81 133 204 ...
2 | 12 46 147 397 933 1962 3776 ...
3 | 58 263 1012 3341 9637 24758 57678 ...
4 | 321 1654 7340 28333 96313 292092 800991 ...
5 | 1975 11290 56278 246905 961897 3357309 10601156 ...
6 | 13265 82808 455534 2227689 9749034 38415080 137251108 ...
...
PROG
(PARI)
A(m, n=m)={my(r=vectorv(m+1), v=vector(n+m+1, k, k)); r[1] = v[1..n+1];
for(i=1, m, v=vector(#v-1, k, v[k+1] + k*sum(j=1, k, v[j])); r[1+i] = v[1..n+1]); Mat(r)}
{ A(6) }
CROSSREFS
Cf. A258173.
Sequence in context: A248788 A340914 A194232 * A110042 A306101 A364967
KEYWORD
nonn,tabl
AUTHOR
Mikhail Kurkov, Mar 28 2024
STATUS
approved