OFFSET
0,3
COMMENTS
T(0,0) = 1 by convention.
LINKS
Alois P. Heinz, Rows n = 0..150, flattened
Wikipedia, Permutation
FORMULA
T(n,k) == 0 (mod k!).
Sum_{k=0..max(0,n-2)} T(n,k)/k! = A365229(n).
EXAMPLE
T(4,0) = 10: (1)(2)(3)(4), (12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432).
T(4,1) = 6: (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4), (14)(2)(3).
T(4,2) = 8: (1)(234), (1)(243), (123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2).
Triangle T(n,k) begins:
1;
1;
2;
3, 3;
10, 6, 8;
25, 45, 20, 30;
176, 60, 250, 90, 144;
721, 861, 770, 1344, 504, 840;
6406, 1778, 7980, 6300, 8736, 3360, 5760;
42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360;
...
MAPLE
b:= proc(n, l, m) option remember; `if`(n=0, x^(m-l), add(
b(n-j, min(l, j), max(m, j))*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, l_, m_] := b[n, l, m] = If[n == 0, x^(m - l), Sum[b[n - j, Min[l, j], Max[m, j]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
T[n_] := CoefficientList[b[n, n, 0], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Aug 14 2023
STATUS
approved