OFFSET
1,2
COMMENTS
Contribution from Paul Curtz, Aug 07 2012 (Start):
Take a(0)=1. Then instead of the Akiyama-Tanigawa algorithm we create the extended (or prolonged) Akiyama-Tanigawa algorithm using A028310(n)=1,1,2,3,4,5,... instead of A000027(n)=1,2,3,4,5,.. .
Hence the array (A051714 with an additional column)
2, 1, 1/2, 1/3, 1/4,
1, 1/2, 1/3, 1/4, 1/5,
a(n) is the denominator of the (first) column before the Akiyama-Tanigawa algorithm leading to the second Bernoulli numbers A164555(n)/A027642(n). See A176672(n).
(End)
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
MATHEMATICA
Denominator[1-(Accumulate[Abs[BernoulliB[Range[0, 40]]]])] (* Harvey P. Dale, Jan 28 2013 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Dec 05 2004
STATUS
approved