login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329874
Array read by antidiagonals: A(n,k) = number of digraphs on n unlabeled nodes, arbitrarily colored with k given colors (n >= 1, k >= 1).
1
1, 2, 3, 3, 10, 16, 4, 21, 104, 218, 5, 36, 328, 3044, 9608, 6, 55, 752, 14814, 291968, 1540944, 7, 78, 1440, 45960, 2183400, 96928992, 882033440, 8, 105, 2456, 111010, 9133760, 1098209328, 112282908928, 1793359192848
OFFSET
1,2
COMMENTS
The coloring of nodes is unrestricted. There is no constraint that all of the k colors have to be used. Nodes with different colors are counted as distinct, nodes with the same color are not. For digraphs with a fixed color set see A329546.
FORMULA
A(1,k) = k.
A(2,k) = k*(2*k+1).
A(n,1) = A000273(n).
A(n,2) = A000595(n).
A(n,4) = A353996(n+1). - Brendan McKay, May 13 2022
A(n,k) = Sum_{i=1..min(n,k)} binomial(k,i)*A329546(n,i).
EXAMPLE
First six rows and columns:
1 2 3 4 5 6
3 10 21 36 55 78
16 104 328 752 1440 2456
218 3044 14814 45960 111010 228588
9608 291968 2183400 9133760 27755016 68869824
1540944 96928992 1098209328 6154473664 23441457680 69924880288
...
n=4, k=3 with A329546:
A(4,3) = 3*218 + 3*2608 + 6336 = 14814.
PROG
(PARI) \\ here C(p) computes A328773 sequence value for given partition.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
C(p)={((i, v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v, Vec(q)))); s/p[i]!))(1, [])}
\\ here mulp(v) computes the multiplicity of the given partition. (see A072811)
mulp(v) = {my(p=(#v)!, k=1); for(i=2, #v, k=if(v[i]==v[i-1], k+1, p/=k!; 1)); p/k!}
wC(p)=mulp(p)*C(p)
A329546(n)={[vecsum(apply(wC, vecsort([Vecrev(p) | p<-partitions(n), #p==m], , 4))) | m<-[1..n]]}
Row(n)=vector(6, k, binomial(k)[2..min(k, n)+1]*A329546(n)[1..min(k, n)]~)
{ for(n=0, 6, print(Row(n))) }
CROSSREFS
Cf. A000273 digraphs with one color, A000595 binary relations, A329546 digraphs with exactly k colors, A328773 digraphs with a given color scheme.
Sequence in context: A100652 A094416 A218868 * A152300 A117030 A155758
KEYWORD
nonn,tabl
AUTHOR
Peter Dolland, Nov 23 2019
STATUS
approved