login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117030
a(1) = a(2) = 1; a(n) = a(n-1)*a(n-2) - a(n-3) - a(n-4) - ... - a(1) for n>2.
1
1, 1, 1, 0, -2, -3, 3, -10, -28, 279, -7803, -2177000, 16987130758, -36980983660158439, -628200804994572838287982201, 23231483704802676028750227275477328286998042, -14594036764575342428539025427350979161630036659925283421091485142638200
OFFSET
1,5
COMMENTS
Form the product of the previous two terms and then subtract all other previous terms.
Additionally, with a(1)=1, a(2)=2, this gives: 1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10... cf. A008619.
MATHEMATICA
f[s_] := Block[{}, Append[s, s[[ -1]]s[[ -2]] - Plus @@ Drop[s, -2]]]; Nest[f, {1, 1}, 15] (* Robert G. Wilson v, May 26 2006 *)
PROG
(C) #include <stdio.h> #include <inttypes.h> int main (void) { int64_t n1=1; int64_t n2=1; int i; int64_t sum=0, next; printf("%lld, %lld, ", n1, n2); for (i=0; i<12; i++) { next=n1*n2-sum; sum+=n1; n1=n2; n2=next; printf("%lld, ", n2); } }
(PARI) {m=16; a=1; b=1; print1(a=1, ", ", b=1, ", "); v=[]; for(n=3, m, print1(k=a*b-sum(j=1, #v, v[j]), ", "); v=concat(v, a); a=b; b=k)} \\ Klaus Brockhaus
CROSSREFS
Sequence in context: A218868 A329874 A152300 * A155758 A009097 A379351
KEYWORD
sign
AUTHOR
Gabriel Finch (salsaman(AT)xs4all.nl), Apr 16 2006
EXTENSIONS
a(12) corrected; a(15) and a(16) from Klaus Brockhaus, Apr 17 2006
STATUS
approved