login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117157
a(1)=a(2)=1; a(n) = a(n-1)*a(n-2) + a(n-3) + a(n-4) + ... + a(1) for n>2.
1
1, 1, 1, 2, 4, 11, 49, 548, 26872, 14725925, 395715057217, 5827270253948278214, 2305938581960065033611659323852, 13437327306087560724405450621249967248150551970959
OFFSET
1,4
COMMENTS
Form the product of the previous two terms and then add all other previous terms.
MATHEMATICA
f[s_] := Block[{}, Append[s, s[[ -1]]s[[ -2]] + Plus @@ Drop[s, -2]]]; Nest[f, {1, 1}, 12] (* Robert G. Wilson v, May 26 2006 *)
PROG
#include <stdio.h> #include <inttypes.h> int main (void) { int64_t n1=1; int64_t n2=1; int i; int64_t sum=0, next; printf("%lld, %lld, ", n1, n2); for (i=0; i<10; i++) { next=n1*n2+sum; sum+=n1; n1=n2; n2=next; printf("%lld, ", n2); } }
(PARI) {m=14; print1(a=1, ", ", b=1, ", "); v=[]; for(n=3, m, print1(k=a*b+sum(j=1, #v, v[j]), ", "); v=concat(v, a); a=b; b=k)} \\ Klaus Brockhaus
CROSSREFS
Cf. A117030.
Sequence in context: A091240 A068488 A096119 * A267013 A376918 A318532
KEYWORD
nonn
AUTHOR
Gabriel Finch (salsaman(AT)xs4all.nl), Apr 21 2006
EXTENSIONS
a(13) and a(14) from Klaus Brockhaus, Apr 27 2006
STATUS
approved