OFFSET
1,1
COMMENTS
Since #P34 + 1 has two rather large factors, we need the number of primes less than or equal to 678279959005528882498681487.
LINKS
R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018. - From N. J. A. Sloane, Jun 13 2012
Hisanori Mishima, Factorization results #Pn (Primorial) + 1
FORMULA
a(n) = PrimePi(A051342).
MATHEMATICA
Do[ Print[ PrimePi[ FactorInteger[ Product[ Prime[k], {k, 1, n}] + 1] [[1, 1]]]], {n, 1, 20} ]
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Lekraj Beedassy, Mar 11 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Mar 12 2002
STATUS
approved