login
A068489
m for which prime(m) is the least prime dividing #prime(n) - 1, i.e., one less than primorial n-th prime (A057588).
1
3, 10, 5, 343, 3248, 18, 16, 12, 22, 20324, 50, 9414916809095, 13120, 43, 8481, 1200361259, 196, 38, 10326732314, 65, 38, 34
OFFSET
2,1
COMMENTS
Since #P13 - 1 is a prime, see A006794, we need the number of primes less than or equal to #P13 - 1. The sequence continues, for n=14 to 23: 13120, 43, 8481, 1200361259, 196, 38, 10326732314, 65, 38, 34.
a(24) = pi(23768741896345550770650537601358309). - Donovan Johnson, Dec 08 2009
LINKS
Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2023. - From N. J. A. Sloane, Jun 13 2012
FORMULA
a(n) = A000720(A057713(n)).
MATHEMATICA
Do[ Print[ PrimePi[ FactorInteger[ Product[ Prime[k], {k, 1, n}] - 1] [[1, 1]]]], {n, 2, 22} ]
CROSSREFS
KEYWORD
hard,more,nonn
AUTHOR
Lekraj Beedassy, Mar 11 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Mar 12 2002
a(13) from Donovan Johnson, Dec 08 2009
STATUS
approved