login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068492
Primes that remain prime after each digit is replaced by its square.
6
11, 13, 17, 19, 71, 73, 89, 101, 103, 107, 131, 137, 149, 167, 173, 191, 197, 199, 223, 229, 233, 283, 307, 311, 313, 331, 337, 359, 383, 401, 433, 439, 461, 463, 491, 523, 569, 593, 631, 641, 647, 659, 709, 733, 743, 773, 809, 823, 859, 907, 911, 919, 947
OFFSET
1,1
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..785 from Zak Seidov)
EXAMPLE
When each digit of the prime 89 is replaced by its square, 6481, a prime, results. Hence 89 is a term of the sequence.
MATHEMATICA
f[n_] := Block[{a = IntegerDigits[n], b = "", k = 1, l}, l = Length[a]; While[k < l + 1, b = StringJoin[b, ToString[a[[k]]^2]]; k++ ]; ToExpression[b]]; Do[ If[ PrimeQ[ f[ Prime[n]]], Print[ Prime[n]]], {n, 1, 150} ]
Select[Prime[Range[200]], PrimeQ[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]^2)]]]&] (* Harvey P. Dale, Dec 31 2023 *)
PROG
(Magma) DigitsSquared:=func< n | StringToInteger(&cat[ IntegerToString(a): a in Reverse([ d^2: d in Intseq(n) ]) ]) >; IsA068492:=func< p | IsPrime(DigitsSquared(p)) >; [ p: p in PrimesUpTo(1000) | IsA068492(p) ]; // Klaus Brockhaus, Mar 05 2011
(PARI)
digsquare(n)={fromdigits(concat(apply(d->if(d, digits(d^2), [0]), digits(n))))}
ok(n)={isprime(n)&&isprime(digsquare(n))} \\ Andrew Howroyd, Feb 27 2018
(Python)
from sympy import isprime, nextprime
n = 2
while n < 8000:
t = int(''.join(str(int(i)**2) for i in list(str(n))))
if isprime(t):
print(n)
n = nextprime(n)
# Abhiram R Devesh, Feb 09 2015
CROSSREFS
Sequence in context: A132244 A262731 A087201 * A206287 A306661 A045707
KEYWORD
base,nonn
AUTHOR
Joseph L. Pe, Mar 11 2002
EXTENSIONS
Edited and extended by Robert G. Wilson v, Mar 19 2002
Duplicate a(1)-a(215) removed from b-file by Andrew Howroyd, Feb 27 2018
STATUS
approved