login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068494 a(n) = n mod phi(n). 10
0, 0, 1, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 2, 7, 0, 1, 0, 1, 4, 9, 2, 1, 0, 5, 2, 9, 4, 1, 6, 1, 0, 13, 2, 11, 0, 1, 2, 15, 8, 1, 6, 1, 4, 21, 2, 1, 0, 7, 10, 19, 4, 1, 0, 15, 8, 21, 2, 1, 12, 1, 2, 27, 0, 17, 6, 1, 4, 25, 22, 1, 0, 1, 2, 35, 4, 17, 6, 1, 16, 27, 2, 1, 12, 21, 2, 31, 8, 1, 18, 19, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

COMMENTS

By Lehmer's Conjecture, when n > 2 then a(n) = 1 if and only if n is prime. The Notices article states "Lehmer's Conjecture (1932). phi(n) | (n-1) if and only if n is prime." - Michael Somos, Oct 14 2011

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

D. H. Bailey and J. M. Borwein, Exploratory Experimentation and Computation, Notices of A. M. S. 58 (2011) 1410-1419, see p. 1416.

FORMULA

b^(n - a(n)) == 1 (mod n) for every b coprime to n. - Thomas Ordowski, Jun 30 2017

MATHEMATICA

Table[Mod[n, EulerPhi[n]], {n, 100}] (* Alonso del Arte, Feb 15 2013 *)

PROG

(PARI) for(n=1, 150, print1(n%eulerphi(n), ", "))

(PARI) {a(n) = n % eulerphi(n)}; /* Michael Somos, Oct 14 2011 */

(Haskell)

a068494 n = mod n $ a000010 n  -- Reinhard Zumkeller, Oct 14 2011

(MAGMA) [n mod EulerPhi(n): n in [1..100]]; // Vincenzo Librandi, Jul 19 2015

CROSSREFS

Sequence in context: A023445 A291760 A291759 * A200726 A195040 A250486

Adjacent sequences:  A068491 A068492 A068493 * A068495 A068496 A068497

KEYWORD

easy,nonn

AUTHOR

Benoit Cloitre, Mar 11 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 06:56 EDT 2021. Contains 346273 sequences. (Running on oeis4.)