login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068491
Expansion of Molien series for a certain 4-D group of order 96.
1
1, 1, 2, 3, 6, 8, 13, 17, 25, 31, 42, 52, 68, 81, 101, 119, 145, 168, 200, 229, 268, 303, 349, 392, 447, 497, 560, 619, 692, 760, 843, 921, 1015, 1103, 1208, 1308, 1426, 1537, 1667, 1791, 1935, 2072, 2230, 2381, 2554, 2719, 2907, 3088, 3293, 3489, 3710, 3923, 4162
OFFSET
0,3
COMMENTS
The first formula intersperses the terms with zeros, the second formula doesn't. - Colin Barker, Apr 01 2015
FORMULA
G.f.: (x^22+x^16+x^14+x^12+x^10+x^8+x^6+1)/((1-x^2)*(1-x^4)*(1-x^8)*(1-x^12)).
G.f.: (x^10-x^9+x^8+x^6+x^4+x^2-x+1) / ((x-1)^4*(x+1)^2*(x^2-x+1)*(x^2+1)*(x^2+x+1)). - Colin Barker, Apr 01 2015
EXAMPLE
1 + x^2 + 2*x^4 + 3*x^6 + 6*x^8 + 8*x^10 + 13*x^12 + 17*x^14 + 25*x^16 + 31*x^18 + ...
MATHEMATICA
LinearRecurrence[{2, -1, 0, 1, -2, 2, -2, 1, 0, -1, 2, -1}, {1, 1, 2, 3, 6, 8, 13, 17, 25, 31, 42, 52}, 60] (* Harvey P. Dale, Aug 29 2016 *)
PROG
(Magma) // Definition of group: F<al> := CyclotomicField(12); w := al^4; i := al^3; s3 := (1+2*w)/i; M := GeneralLinearGroup(4, F);
g1 := M![ 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0 ]; g2 := M![ -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0 ]; g3 := M![ 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1 ];
H := M![ 0, -1/s3, -1/s3, -1/s3, 1/s3, 0, 1/s3, -1/s3, 1/s3, -1/s3, 0, 1/s3, 1/s3, 1/s3, -1/s3, 0 ]; G := sub<M| g1, g2, g3, H>;
(PARI) Vec((x^10-x^9+x^8+x^6+x^4+x^2-x+1) / ((x-1)^4*(x+1)^2*(x^2-x+1)*(x^2+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Apr 01 2015
CROSSREFS
Sequence in context: A319390 A251260 A022943 * A364796 A239952 A353902
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 31 2002
STATUS
approved