login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319390
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), a(0)=1, a(1)=2, a(2)=3, a(3)=6, a(4)=8.
1
1, 2, 3, 6, 8, 13, 16, 23, 27, 36, 41, 52, 58, 71, 78, 93, 101, 118, 127, 146, 156, 177, 188, 211, 223, 248, 261, 288, 302, 331, 346, 377, 393, 426, 443, 478, 496, 533, 552, 591, 611, 652, 673, 716, 738, 783, 806, 853, 877, 926, 951, 1002
OFFSET
0,2
COMMENTS
The bisections A104249(n) = 1, 3, 8, ... and A143689(n+1) = 2, 6, 13, 23, ... are in the following hexagonal spiral:
29--28--28--27--27
/ \
29 17--17--16--16 26
/ / \ \
30 18 9---8---8 15 26
/ / / \ \ \
30 18 9 3---3 7 15 25
/ / / / \ \ \ \
31 19 10 4 1 2 7 14 25
/ / / / / / / /
19 10 4 1---2 6 14 24
\ \ \ / / /
20 11 5---5---6 13 24
\ \ / /
20 11--12--12--13 23
\ /
21--21--22--22--23
.
a(n) mod 9 = A140265(n) mod 9.
FORMULA
a(2n) = (3*n^2 + n + 2)/2. a(2n+1) = (3*n^2 + 5*n + 4)/2.
a(-n) = a(n).
a(n) = a(n-1) + A026741(n).
G.f.: (1 + x - x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2). - Colin Barker, Jun 05 2019
a(n) = 1 + A001318(n). - Peter Bala, Feb 04 2021
E.g.f.: ((8 + 7*x + 3*x^2)*cosh(x) + (9 + 5*x + 3*x^2)*sinh(x))/8. - Stefano Spezia, Feb 05 2021
MATHEMATICA
LinearRecurrence[{1, 2, -2, -1, 1}, {1, 2, 3, 6, 8}, 100] (* Paolo Xausa, Nov 13 2023 *)
PROG
(PARI) Vec((1 + x - x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jun 05 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 18 2018
STATUS
approved