login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143689
a(n) = (3*n^2 - n + 2)/2.
12
1, 2, 6, 13, 23, 36, 52, 71, 93, 118, 146, 177, 211, 248, 288, 331, 377, 426, 478, 533, 591, 652, 716, 783, 853, 926, 1002, 1081, 1163, 1248, 1336, 1427, 1521, 1618, 1718, 1821, 1927, 2036, 2148, 2263, 2381, 2502, 2626, 2753, 2883, 3016, 3152, 3291
OFFSET
0,2
COMMENTS
Equals left border of triangle A033292.
Equals binomial transform of [1, 1, 3, 0, 0, 0, ...].
A242357(a(n)) = 1. - Reinhard Zumkeller, May 11 2014
These might be called "trisected pentagonal numbers": A figurate pentagonal number is composed of three triangles, of which the central one is the largest, and the removal of the triangular frame (3*n) of the central triangle trisects the figure. This is reflected in the formula a(n) = A000326(n+1) - 3*n. See illustration in links. - John Elias, May 27 2022
LINKS
D. Bevan, D. Levin, P. Nugent, J. Pantone, and L. Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036 [math.CO], 2015-2016.
Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
FORMULA
a(n) = A000326(n+1) - 3*n. (A000326 are the pentagonal numbers.)
a(n) = (3*n^2 - n + 2)/2 = A027599(n+1)/2. - R. J. Mathar, Sep 03 2008
a(n) = a(n-1) + 3*n - 2 (with a(0)=1). - Vincenzo Librandi, Nov 25 2010
a(n) = 2*a(n-1) - a(n-2) + 3.
O.g.f.: (1-x+3*x^2)/((1-x)^3). - Eric Werley, Jun 27 2011
a(n) = A104249(-n). - Bruno Berselli, Jul 08 2015
a(n) = binomial(n,2) + n^2 + 1 = A152947(n+1) + A000290(n). - Franck Maminirina Ramaharo, Mar 01 2018
MATHEMATICA
Table[(3n^2-n+2)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 2, 6}, 50] (* Harvey P. Dale, May 05 2014 *)
PROG
(Haskell)
a143689 n = n*(3*n-1) `div` 2 + 1 -- Reinhard Zumkeller, May 11 2014
(PARI) a(n)=(3*n^2-n+2)/2 \\ Charles R Greathouse IV, Oct 07 2015
(Maxima) makelist(binomial(n, 2) + n^2 + 1, n, 0, 100); /* Franck Maminirina Ramaharo, Mar 01 2018 */
CROSSREFS
a(n) = A000326(n+1) - 3n. Third column of A107111.
Sequence in context: A258603 A064960 A293503 * A180773 A011891 A370880
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Aug 29 2008
EXTENSIONS
Index of A000326 in definition, formula and example corrected by R. J. Mathar, Sep 03 2008
STATUS
approved