login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370880
Natural numbers repeated 3 times are taken in parts of successive lengths 1,2,3,..., and a(n) is the sum of the numbers in the part with length n.
1
1, 2, 6, 13, 23, 39, 61, 89, 126, 172, 227, 294, 373, 464, 570, 691, 827, 981, 1153, 1343, 1554, 1786, 2039, 2316, 2617, 2942, 3294, 3673, 4079, 4515, 4981, 5477, 6006, 6568, 7163, 7794, 8461, 9164, 9906, 10687, 11507, 12369, 13273, 14219, 15210, 16246
OFFSET
1,2
FORMULA
a(n) = Sum_{i=A000217(n-1)+1..A000217(n)} A002264(i+2).
Let r = n mod 3, then we get
a(n) = n*(n^2+3)/6 if r = 0;
(n*(n^2+3)+2)/6 if r = 1;
(n*(n^2+3)-2)/6 if r = 2.
G.f.: x*(x^4-x^3+3*x^2-x+1)/((x^2+x+1)*(x-1)^4).
EXAMPLE
The parts and resulting sums begin:
Part Sum = a(n)
n=1: 1, ....................... 1
n=2: 1, 1, .................... 2
n=3: 2, 2, 2, ................. 6
n=4: 3, 3, 3, 4, .............. 13
n=5: 4, 4, 5, 5, 5, ........... 23
n=6: 6, 6, 6, 7, 7, 7, ........ 39
n=7: 8, 8, 8, 9, 9, 9, 10, ..... 61
MATHEMATICA
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {1, 2, 6, 13, 23, 39}, 46] (* James C. McMahon, Apr 22 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Nicolay Avilov, Mar 04 2024
STATUS
approved