login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338991
a(n) = Sum_{k=1..floor(n/2)} (n-2*k) * floor((n-k)/k).
2
0, 0, 2, 6, 13, 24, 37, 56, 78, 106, 132, 178, 212, 258, 312, 376, 425, 508, 565, 662, 749, 836, 909, 1058, 1156, 1264, 1384, 1536, 1636, 1836, 1946, 2126, 2282, 2434, 2606, 2880, 3019, 3194, 3385, 3676, 3833, 4138, 4305, 4572, 4863, 5086, 5271, 5692, 5924, 6240
OFFSET
1,3
COMMENTS
Total area of all rectangles with dimensions (y-x) X (z) where x and y are integers such that x + y = n, 0 < x <= y, and z = floor(y/x).
FORMULA
From Vaclav Kotesovec, Jun 24 2021: (Start)
a(n) = n + n*A006218(n) - 2*A024916(n).
a(n) ~ (log(n) + 2*gamma - Pi^2/6 - 1)*n^2, where gamma is the Euler-Mascheroni constant A001620. (End)
MATHEMATICA
Table[Sum[(n - 2 k)*Floor[(n - k)/k], {k, Floor[n/2]}], {n, 60}]
PROG
(Python)
from math import isqrt
def A338991(n): return ((s:=isqrt(n))+1)*(n*(1-s)+s**2)-sum((q:=n//k)*((k-n<<1)+q+1) for k in range(1, s+1)) # Chai Wah Wu, Oct 23 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 21 2020
STATUS
approved