The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003600 Maximal number of pieces obtained by slicing a torus (or a bagel) with n cuts: (n^3 + 3*n^2 + 8*n)/6 (n > 0). (Formerly M1594) 12
 1, 2, 6, 13, 24, 40, 62, 91, 128, 174, 230, 297, 376, 468, 574, 695, 832, 986, 1158, 1349, 1560, 1792, 2046, 2323, 2624, 2950, 3302, 3681, 4088, 4524, 4990, 5487, 6016, 6578, 7174, 7805, 8472, 9176, 9918, 10699, 11520, 12382, 13286, 14233, 15224 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Both the bagel and the torus are solid (apart from the hole in the middle, of course)! - N. J. A. Sloane, Oct 03 2012 REFERENCES M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles and Diversions. Simon and Schuster, NY, 1961. See Chapter 13. (See pages 113-116 in the English edition published by Pelican Books in 1966.) Clifford A. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, pp. 373-374 and Plate 27. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 George Hart, Slice a Bagel into 13 Pieces with Three Cuts Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016. Clifford A. Pickover, Illustration of a(3)=13 [Plate 27 from Computers and the Imagination, used with permission] N. J. A. Sloane, Illustration for a(2)=6 and a(3)=13 [Based on part of Fig. 62 in M. Gardner, The 2nd Scientific American Book of Mathematical Puzzles and Diversions, colored and annotated] Eric Weisstein's World of Mathematics, Torus Cutting. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = binomial(n+2, n-1) + binomial(n, n-1). a(n) = coefficient of z^3 in the series expansion of G^n (n>0), where G=[1-z+z^2-sqrt(1-2z-z^2-2z^3+z^4)]/(2z^2) is the g.f. of A004148 (secondary structures of RNA molecules). - Emeric Deutsch, Jan 11 2004 Binomial transform of [1, 1, 3, 0, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 08 2007 G.f.: (1 - 2*x + 4*x^2 - 3*x^3 + x^4) / (1 - x)^4. - Colin Barker, Jun 28 2012 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 29 2012 a(n) = A108561(n+4,3) for n > 0. - Reinhard Zumkeller, Jun 10 2005 a(n) = A000292(n+1) - A000124(n) for n > 0. - Torlach Rush, Aug 04 2018 a(n) = A000125(n+1) - 2, as one can see by thinking of the donut hole as a slit in a cake, i.e. an (n+1)st cut in the cake that doesn't quite reach the edges of the cake and so leaves two pieces unseparated. - Glen Whitney, Mar 31 2019 MATHEMATICA CoefficientList[Series[(1-2*x+4*x^2-3*x^3+x^4)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 29 2012 *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 6, 13, 24}, 50] (* Harvey P. Dale, Oct 22 2016 *) PROG (MAGMA) I:=[1, 2, 6, 13, 24]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012 (PARI) a(n)=if(n, n*(n^2+3*n+8)/6, 1) \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A000124 (slicing a pancake), A000125 (a cake). Cf. A004148. Sequence in context: A011891 A184533 A178532 * A283551 A000135 A281865 Adjacent sequences:  A003597 A003598 A003599 * A003601 A003602 A003603 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from James A. Sellers, Aug 22 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 14 03:42 EDT 2020. Contains 335716 sequences. (Running on oeis4.)