login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184533
a(n) = floor(1/{(2+n^3)^(1/3)}), where {}=fractional part.
3
2, 6, 13, 24, 37, 54, 73, 96, 121, 150, 181, 216, 253, 294, 337, 384, 433, 486, 541, 600, 661, 726, 793, 864, 937, 1014, 1093, 1176, 1261, 1350, 1441, 1536, 1633, 1734, 1837, 1944, 2053, 2166, 2281, 2400, 2521, 2646, 2773, 2904, 3037, 3174, 3313, 3456, 3601
OFFSET
1,1
COMMENTS
Column 2 of the array at A184532.
FORMULA
a(n) = floor[1/{(2+n^3)^(1/3)}], where {}=fractional part.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = (6*n^2 - (1-(-1)^n))/4 for n>1.
From Alexander R. Povolotsky, Aug 22 2011: (Start)
a(n+1) +a(n) = 3*n^2 + 3*n + 1.
G.f. (-2 - 2*x - x^2 - 2*x^3 + x^4)/((-1 + x)^3*(1 + x)). (End)
a(n) = floor(1/((n^3+2)^(1/3)-n)). - Charles R Greathouse IV, Aug 23 2011
MATHEMATICA
p[n_]:=FractionalPart[(n^3+2)^(1/3)]; q[n_]:=Floor[1/p[n]]; Table[q[n], {n, 1, 120}]
Join[{2}, Table[(6*n^2 - (1-(-1)^n))/4, {n, 2, 50}]] (* or *) Join[{2}, LinearRecurrence[{2, 0, -2, 1}, {6, 13, 24, 37}, 50]] (* G. C. Greubel, Feb 20 2017 *)
PROG
(PARI) a(n)=my(x=sqrtn(n^3+2, 3)); x-=n; 1/x\1 \\ Charles R Greathouse IV, Aug 23 2011
(PARI) concat([2], for(n=2, 25, print1((6*n^2 - (1-(-1)^n))/4, ", "))) \\ G. C. Greubel, Feb 20 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 16 2011
STATUS
approved