login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184535 a(n) = floor(3/5 * n^2), with a(1)=1. 12
1, 2, 5, 9, 15, 21, 29, 38, 48, 60, 72, 86, 101, 117, 135, 153, 173, 194, 216, 240, 264, 290, 317, 345, 375, 405, 437, 470, 504, 540, 576, 614, 653, 693, 735, 777, 821, 866, 912, 960, 1008, 1058, 1109, 1161, 1215, 1269, 1325, 1382, 1440, 1500, 1560, 1622, 1685, 1749, 1815, 1881, 1949, 2018, 2088, 2160, 2232, 2306, 2381 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Apart from the initial term this is the elliptic troublemaker sequence R_n(2,5) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences see the cross references below. - Peter Bala, Aug 08 2013

LINKS

Ray Chandler, Table of n, a(n) for n = 1..10000

K. E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials arXiv:1108.3051v3 [math.NT]

Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 1, -2, 1).

FORMULA

a(n) = floor(1/{(5+n^3)^(1/3)}), where {}=fractional part.

a(n)= +2*a(n-1) -a(n-2) +a(n-5) -2*a(n-6) +a(n-7), for n>8, with g.f. 1-x^2*(1+x)*(2*x^2-x+2)/ ((x^4+x^3+x^2+x+1) *(x-1)^3), so a(n) is (3n^2-2)/5 plus a fifth of A164116 for n>1. [Bruno Berselli, Jan 30 2011. See the following Bala's comment.]

From Peter Bala, Aug 08 2013: (Start)

a(n) = floor(3/5*n^2) for n >= 2.

The sequence b(n) := floor(3/5*n^2) - 3/5*n^2, n >= 1, is periodic with period [-3/5, -2/5, -2/5, -3/5, 0] of length 5. The generating function and recurrence equation given above easily follow from these observations.

The sequence c(n) := 5/2*( (2*n/5 - floor(2*n/5))^2 - (2*n/5 - floor(2*n/5)) ) is also periodic with period 5, and calculation shows it has the same period as the sequence b(n). Thus b(n) = c(n), yielding the alternative formula a(n) = 3/5*n^2 + 5/2*( (2*n/5 - floor(2*n/5))^2 - (2*n/5 - floor(2*n/5)) ), which is one of the formulas for the elliptic troublemaker sequence R_n(2,5) given in Stange (see Section 7, equation (21)). (End)

MATHEMATICA

p[n_] := FractionalPart[(n^3 + 5)^(1/3)]; q[n_] := Floor[1/p[n]]; Table[q[n], {n, 1, 120}]

Join[{1}, LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {2, 5, 9, 15, 21, 29, 38}, 62]] (* Ray Chandler, Aug 31 2015 *)

CROSSREFS

Cf. A183532, A279169.

Elliptic troublemaker sequences: A000212 (= R_n(1,3) = R_n(2,3)), A002620 (= R_n(1,2)), A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6))), A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A184535 (= R_n(2,5) = R_n(3,5)).

Sequence in context: A006599 A013933 A101201 * A033096 A195014 A152738

Adjacent sequences:  A184532 A184533 A184534 * A184536 A184537 A184538

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Jan 16 2011

EXTENSIONS

Better name from Peter Bala, Aug 08 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 11:09 EST 2018. Contains 299546 sequences. (Running on oeis4.)