login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164116 Expansion of (1 - x) * (1 - x^4) / (1 - x^5) in powers of x. 11
1, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

This sequence with a(0) replaced by 2 appears, together with three other sequences, in the formula 2*exp(2*Pi*n*I/5) = 2*T(n,x) + S(n-1,x)*sqrt(2+phi)*I, with x = (phi-1)/2 and I  = sqrt(-1), where phi = (1+sqrt(5))/2 (golden section) after reduction of powers using phi^2 = phi+1. T and S are Chebyshev polynomials from A053120 and A049310. This results in 2*exp(2*Pi*n*I/5) = (A(n) + B(n)*phi) + (C(n) + D(n)*phi)*sqrt(2+phi)*I, with A(n) = a(n+5), B(n) = A080891(n), C(n) = A156174(n+4) and D(n) = A010891(n+3) for n >= 0. - Wolfdieter Lang, Feb 26 2014

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

FORMULA

Euler transform of length 5 sequence [-1, 0, 0, -1, 1].

a(n) = a(-n) for all n in Z. a(n+5) = a(n) unless n=0 or n=-5.

G.f.: (1 - x^4)/(1 + x + x^2 + x^3 + x^4).

a(n) = (-1)^n * A164118(n). Convolution inverse of A164115.

a(n) = 2*0^mod(n,5) - 0^n - mod(mod(n+2,5),2). - Wesley Ivan Hurt, Apr 28 2015

EXAMPLE

G.f. = 1 - x - x^4 + 2*x^5 - x^6 - x^9 + 2*x^10 - x^11 - x^14 + 2*x^15 - x^16 + ...

exp(2*Pi*3*I/5) = (0 - phi) + (1 - phi)*sqrt(2+phi)*I, with phi = (1+sqrt(5))/2. - Wolfdieter Lang, Feb 26 2014

MATHEMATICA

CoefficientList[Series[(1-x)(1-x^4)/(1-x^5), {x, 0, 110}], x] (* Harvey P. Dale, Sep 25 2013 *)

PROG

(PARI) {a(n) = -(n==0) + [2, -1, 0, 0, -1][n%5 + 1]};

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 - x^4)/(1+x+x^2+x^3+x^4))); // G. C. Greubel, Sep 22 2018

CROSSREFS

Cf. A164115, A164118.

Sequence in context: A115296 A059048 A257181 * A164118 A180981 A284317

Adjacent sequences:  A164113 A164114 A164115 * A164117 A164118 A164119

KEYWORD

sign,easy

AUTHOR

Michael Somos, Aug 10 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 00:36 EDT 2021. Contains 346493 sequences. (Running on oeis4.)