This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284317 Expansion of Product_{k>=0} (1 - x^(5*k+4)) in powers of x. 6
 1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 3, -1, 0, 0, -2, 3, -1, 0, 0, -3, 4, -1, 0, 1, -4, 4, -1, 0, 1, -5, 5, -1, 0, 2, -7, 5, -1, 0, 3, -8, 6, -1, 0, 5, -10, 6, -1, -1, 6, -12, 7, -1, -1, 9, -14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,24 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 FORMULA a(n) = -(1/n)*Sum_{k=1..n} A284103(k)*a(n-k), a(0) = 1. G.f. is the QPochhammer symbol (x^4;x^5)_infinity. - Robert Israel, Mar 27 2017 MAPLE S:= series(mul(1-x^(5*k+4), k=0..200), x, 101): seq(coeff(S, x, j), j=0..100); # Robert Israel, Mar 27 2017 MATHEMATICA CoefficientList[Series[Product[1 - x^(5k + 4), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *) PROG (PARI) Vec(prod(k=0, 100, 1 - x^(5*k + 4)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017 CROSSREFS Cf. Product_{k>=0} (1 - x^(m*k+m-1)): A081362 (m=2), A284315 (m=3), A284316 (m=4), this sequence (m=5). Cf. A281243, A284103. Sequence in context: A164116 A164118 A180981 * A281243 A284314 A280454 Adjacent sequences:  A284314 A284315 A284316 * A284318 A284319 A284320 KEYWORD sign AUTHOR Seiichi Manyama, Mar 25 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 03:15 EDT 2019. Contains 328038 sequences. (Running on oeis4.)