login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284317
Expansion of Product_{k>=0} (1 - x^(5*k+4)) in powers of x.
7
1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 2, -1, 0, 0, -1, 2, -1, 0, 0, -1, 3, -1, 0, 0, -2, 3, -1, 0, 0, -3, 4, -1, 0, 1, -4, 4, -1, 0, 1, -5, 5, -1, 0, 2, -7, 5, -1, 0, 3, -8, 6, -1, 0, 5, -10, 6, -1, -1, 6, -12, 7, -1, -1, 9, -14
OFFSET
0,24
LINKS
FORMULA
a(n) = -(1/n)*Sum_{k=1..n} A284103(k)*a(n-k), a(0) = 1.
G.f. is the QPochhammer symbol (x^4;x^5)_infinity. - Robert Israel, Mar 27 2017
MAPLE
S:= series(mul(1-x^(5*k+4), k=0..200), x, 101):
seq(coeff(S, x, j), j=0..100); # Robert Israel, Mar 27 2017
MATHEMATICA
CoefficientList[Series[Product[1 - x^(5k + 4), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *)
PROG
(PARI) Vec(prod(k=0, 100, 1 - x^(5*k + 4)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Cf. Product_{k>=0} (1 - x^(m*k+m-1)): A081362 (m=2), A284315 (m=3), A284316 (m=4), this sequence (m=5).
Sequence in context: A164116 A164118 A180981 * A281243 A284314 A280454
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 25 2017
STATUS
approved