login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284320
Expansion of Product_{k>=0} (1 - x^(5*k+3)) in powers of x.
4
1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 2, 0, -1, -1, 0, 2, 0, -1, -1, 0, 3, 0, -1, -2, 0, 3, 0, -1, -3, 0, 4, 1, -1, -4, 0, 4, 1, -1, -5, 0, 5, 2, -1, -7, 0, 5, 3, -1, -8, 0, 6, 5, -1, -10, -1, 6, 6, -1, -12, -1, 7, 9, -1, -14, -2, 7, 11
OFFSET
0,22
LINKS
FORMULA
a(n) = -(1/n)*Sum_{k=1..n} A284281(k)*a(n-k), a(0) = 1.
MATHEMATICA
CoefficientList[Series[Product[1 - x^(5k + 3), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 25 2017 *) (* or *)
a[0]=1; a[n_]:=a[n]= -(1/n) Sum[ a[n-k] DivisorSum[k, # &, Mod[#, 5] == 3 &], {k, n}]; a /@ Range[0, 100] (* Giovanni Resta, Mar 25 2017 *)
PROG
(PARI) Vec(prod(k=0, 100, 1 - x^(5*k + 3)) + O(x^101)) \\ Indranil Ghosh, Mar 25 2017
CROSSREFS
Cf. Product_{k>=0} (1 - x^(5*k+m)): A284314 (m=1), A284319 (m=2), this sequence (m=3), A284317 (m=4).
Sequence in context: A116799 A057556 A112761 * A281271 A284319 A281272
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 25 2017
STATUS
approved