login
A281243
Expansion of Product_{k>=1} (1 + x^(5*k-1)).
18
1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 1, 0, 0, 2, 3, 1, 0, 0, 3, 4, 1, 0, 1, 4, 4, 1, 0, 1, 5, 5, 1, 0, 2, 7, 5, 1, 0, 3, 8, 6, 1, 0, 5, 10, 6, 1, 1, 6, 12, 7, 1, 1, 9, 14, 7, 1, 2, 11, 16, 8, 1
OFFSET
0,24
COMMENTS
Convolution of this sequence and A280454 is A203776.
LINKS
FORMULA
a(n) ~ exp(sqrt(n/15)*Pi) / (2^(9/5)*15^(1/4)*n^(3/4)) * (1 + (Pi/(240*sqrt(15)) - 3*sqrt(15)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 18 2017, extended Jan 24 2017
G.f.: Sum_{k>=0} x^(k*(5*k + 3)/2) / Product_{j=1..k} (1 - x^(5*j)). - Ilya Gutkovskiy, Nov 24 2020
MATHEMATICA
nmax = 200; CoefficientList[Series[Product[(1 + x^(5*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 5] == 4, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 18 2017
STATUS
approved