|
|
A124645
|
|
Triangle T(n,k), 0<=k<=n, read by rows given by [1,-1,0,0,0,0,0,...] DELTA [ -1,2,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 .
|
|
3
|
|
|
1, 1, -1, 0, 1, -1, 0, 1, -2, 1, 0, 0, 1, -2, 1, 0, 0, 1, -3, 3, -1, 0, 0, 0, 1, -3, 3, -1, 0, 0, 0, 1, -4, 6, -4, 1, 0, 0, 0, 0, 1, -4, 6, -4, 1, 0, 0, 0, 0, 1, -5, 10, -10, 5, -1, 0, 0, 0, 0, 0, 1, -5, 10, -10, 5, -1, 0, 0, 0, 0, 0, 1, -6, 15, -20, 15, -6, 1, 0, 0, 0, 0, 0, 0, 1, -6, 15, -20, 15, -6, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,9
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Row n has g.f.: x^[n/2]*(1-x)^(n-[n/2]).
G.f.: (1-x*y+x)/(1-x^2*y+x^2*y^2). - R. J. Mathar, Aug 11 2015
T(n, k) = (-1)^(k + floor(n/2)) * binomial(floor((n+1)/2), k - floor(n/2)). - G. C. Greubel, May 01 2021
|
|
EXAMPLE
|
Triangle begins:
1;
1, -1;
0, 1, -1;
0, 1, -2, 1;
0, 0, 1, -2, 1;
0, 0, 1, -3, 3, -1;
0, 0, 0, 1, -3, 3, -1;
0, 0, 0, 1, -4, 6, -4, 1;
0, 0, 0, 0, 1, -4, 6, -4, 1;
0, 0, 0, 0, 1, -5, 10, -10, 5, -1;
0, 0, 0, 0, 0, 1, -5, 10, -10, 5, -1;
0, 0, 0, 0, 0, 1, -6, 15, -20, 15, -6, 1;
|
|
MATHEMATICA
|
Table[(-1)^(Floor[n/2]+k)*Binomial[Floor[(n+1)/2], k-Floor[n/2]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 01 2021 *)
|
|
PROG
|
(Magma) [(-1)^(k+Floor(n/2))*Binomial(Floor((n+1)/2), k-Floor(n/2)): k in [0..n], n in [0..12]]; // G. C. Greubel, May 01 2021
(Sage) flatten([[(-1)^(k+(n//2))*binomial(((n+1)//2), k-(n//2)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 01 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|