login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124645 Triangle T(n,k), 0<=k<=n, read by rows given by [1,-1,0,0,0,0,0,...] DELTA [ -1,2,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 . 3
1, 1, -1, 0, 1, -1, 0, 1, -2, 1, 0, 0, 1, -2, 1, 0, 0, 1, -3, 3, -1, 0, 0, 0, 1, -3, 3, -1, 0, 0, 0, 1, -4, 6, -4, 1, 0, 0, 0, 0, 1, -4, 6, -4, 1, 0, 0, 0, 0, 1, -5, 10, -10, 5, -1, 0, 0, 0, 0, 0, 1, -5, 10, -10, 5, -1, 0, 0, 0, 0, 0, 1, -6, 15, -20, 15, -6, 1, 0, 0, 0, 0, 0, 0, 1, -6, 15, -20, 15, -6, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
Matrix inverse of A108299.
LINKS
FORMULA
Row n has g.f.: x^[n/2]*(1-x)^(n-[n/2]).
G.f.: (1-x*y+x)/(1-x^2*y+x^2*y^2). - R. J. Mathar, Aug 11 2015
T(n, k) = (-1)^(k + floor(n/2)) * binomial(floor((n+1)/2), k - floor(n/2)). - G. C. Greubel, May 01 2021
EXAMPLE
Triangle begins:
1;
1, -1;
0, 1, -1;
0, 1, -2, 1;
0, 0, 1, -2, 1;
0, 0, 1, -3, 3, -1;
0, 0, 0, 1, -3, 3, -1;
0, 0, 0, 1, -4, 6, -4, 1;
0, 0, 0, 0, 1, -4, 6, -4, 1;
0, 0, 0, 0, 1, -5, 10, -10, 5, -1;
0, 0, 0, 0, 0, 1, -5, 10, -10, 5, -1;
0, 0, 0, 0, 0, 1, -6, 15, -20, 15, -6, 1;
MATHEMATICA
Table[(-1)^(Floor[n/2]+k)*Binomial[Floor[(n+1)/2], k-Floor[n/2]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 01 2021 *)
PROG
(Magma) [(-1)^(k+Floor(n/2))*Binomial(Floor((n+1)/2), k-Floor(n/2)): k in [0..n], n in [0..12]]; // G. C. Greubel, May 01 2021
(Sage) flatten([[(-1)^(k+(n//2))*binomial(((n+1)//2), k-(n//2)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 01 2021
CROSSREFS
Sequence in context: A281243 A284314 A280454 * A029409 A335391 A014674
KEYWORD
sign,tabl
AUTHOR
Philippe Deléham, Jun 13 2007, Aug 22 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 14 09:44 EDT 2024. Contains 375921 sequences. (Running on oeis4.)