login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124647 a(n) = (2n + 1)*3^n. 10
1, 9, 45, 189, 729, 2673, 9477, 32805, 111537, 373977, 1240029, 4074381, 13286025, 43046721, 138706101, 444816117, 1420541793, 4519905705, 14334558093, 45328197213, 142958160441, 449795187729, 1412147682405, 4424729404869, 13839047287569, 43211719081593, 134718888901437 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
1 - 1/9 + 1/45 - 1/189 + ... = Pi/(2*sqrt(3)) = A093766. [Jolley eq 271].
If X_1,X_2,...,X_n are 3-blocks of a (4n+1)-set X then, for n>=1, a(n) is the number of (n+1)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 23 2007
Sum_{k>=0} 1/a(k) = log(2+sqrt(3))*sqrt(3)/2 = 1.1405189944... - Jaume Oliver Lafont, Nov 30 2009
REFERENCES
L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 50
LINKS
A. V. Kitaev and A. Vartanian, Algebroid Solutions of the Degenerate Third Painlevé Equation for Vanishing Formal Monodromy Parameter, arXiv:2304.05671 [math.CA], 2023. See p. 14.
FORMULA
G.f.: (1+3*x)/(1-3*x)^2. - Jaume Oliver Lafont, Mar 07 2009
a(n) = 6*a(n-1) - 9*a(n-2) for n > 1; a(0) = 1, a(1) = 9. - Klaus Brockhaus, Sep 23 2009
a(n) = 9*A081038(n-1) for n > 0. - Klaus Brockhaus, Sep 23 2009
a(n) = Sum_{i=1..2*3^n-1} gcd(i,2*3^n) = A018804(2*3^n) -2*3^n. This is an application of the multiplicative property of the gcd sum-function A018804. So we get: 2*3^0 * phi(3^n) + ... + 2*3^(n-1) * phi(3^1) + 2*3^n * phi(3^0)+3^0 * phi(2*3^n) + ... + 3^n * phi(2*3^0) - gcd(2*3^n,2*3^n) = a(n), where phi=A000010 is Euler's totient. A general formula is Sum_{i=1..2*p^n-1} gcd(i,2*p^n) = n*3*p^n * n - 3*n*p^(n-1) + p^n, for p an odd prime. This sequence correspondes to p=3. - Jeffrey R. Goodwin, Nov 10 2011
E.g.f.: exp(3*x)*(1 + 6*x). - Stefano Spezia, May 07 2023
EXAMPLE
a(3) = 189 = 7*(3^3).
MATHEMATICA
Table[3^n*(2*n+1), {n, 0, 30}] (* G. C. Greubel, May 01 2021 *)
PROG
(Magma) [ (2*n+1)*3^n: n in [0..23] ]; // Klaus Brockhaus, Sep 23 2009
(Sage) [3^n*(2*n+1) for n in (0..30)] # G. C. Greubel, May 01 2021
CROSSREFS
Sequence in context: A022574 A321948 A050574 * A111640 A024209 A179855
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Dec 22 2006
EXTENSIONS
More terms from Klaus Brockhaus, Sep 23 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 21:09 EDT 2024. Contains 375990 sequences. (Running on oeis4.)