OFFSET
0,1
COMMENTS
The number of permutations of [k+n] that differ in every position from both the identity permutation and a permutation consisting of k 1-cycles and s cycles of lengths p_1, p_2, ... p_s, with p_j >= 2 and p_1+p_2+...+p_s = n, can be expressed as Sum T(k,p_1+-p_2+-...+-p_s), where the sum is over all 2^(s-1) choices of sign and where T(k,-n) = T(k,n) (Touchard).
LINKS
Mathematics Stack Exchange, Double derangement and the other unfamous kind of derangement.
J. Touchard, Sur un problème de permutations, Comptes Rendus Acad. Sci. Paris, 198 (1934) 631-633.
Max Wyman and Leo Moser, On the problème des ménages, Canadian Journal of Mathematics, 10 (1958) 468-480.
FORMULA
T(k,0) = 2*nu(k,k), T(k,n>0) = Sum_{j=0..n} A213234(2*n,j)*nu(k,k+n-j) = Sum_{j=0..n} (-1)^j*2*n/(2*n-j)*binomial(2*n-j,j)*nu(k,k+n-j) where nu(k,k+n) = A047920(k+n,k) = Sum_{j=0..k} (-1)^j*binomial(k,j)*(k+n-j)! (Touchard).
T(k,n) = 2*cos(2*n * arccos(1/2*sqrt(x))) = 2*Chebyshev_T(2*n,sqrt(x)/2), where, after expanding in powers of x, x^m gets replaced by nu(k,k+m) (Touchard).
T(k,n) = 2*(-1)^n*Sum_{j=0..n} (-1)^j*(Product_{r=0..j} n^2-r^2)/(2*j)!*nu(k,k+j) (Touchard).
T(k,n) = 2*Integral_{x=0..oo} e^(-x^2) * (x^2-1)^k * x * ((x+sqrt(x^2-4))^(2*n)+(x-sqrt(x^2-4))^(2*n)) / 2^(2*n) dx (Touchard).
T(k,0) = 2*Sum_{j=0..h} binomial(h,j)*k(j), T(k,n) = Sum_{i>=0} A213234(n,i)*Sum_{j=0..h} binomial(h,j)*k(n-2*i+j) = Sum_{i>=0} (-1)^i*n/(n-i)*binomial(n-i,i)*Sum_{j=0..h} binomial(h,j)*k(n-2*i+j) where k(n) = A000023(n) = n! * Sum_{i=0..n} (-2)^i / i! (k=0 case due to Wyman and Moser)
T(k+1,n+1) = T(k,n)+T(k,n+1)+T(k,n+2): This holds for all integers n if one defines T(k,-n) = T(k,n).
T(k,0) = 2*A000166(k).
T(k,1) = A105926(k).
T(k,2) = A331007(k+2).
T(0,n) = A102761(n).
T(1,n) = A000270(n).
EXAMPLE
Array starts:
k/n | 0 1 2 3 4 5 6 7
-----------------------------------------------------------------------
0 | 2 -1 0 1 2 13 80 579
1 | 0 1 0 3 16 95 672 5397
2 | 2 1 4 19 114 783 6164 54773
3 | 4 7 24 137 916 7061 61720 602955
4 | 18 35 168 1077 8114 69697 671736 7172007
5 | 88 221 1280 9359 78888 749547 7913440 91815601
6 | 530 1589 10860 89527 837794 8741875 100478588 1260186153
7 | 3708 12979 101976 938181 9669196 110058257 1369406616 18475560567
There are T(1,3)=3 permutations that differ from 1234=(1)(2)(3)(4) and 1342=(1)(234) in every position: 2413, 3421, and 4123.
MAPLE
T := proc(n, k) local t; t := proc(n, k) option remember;
simplify((n + k)!*hypergeom([-n], [-n - k], -1)) end:
if k = 0 then return 2*t(n, 0) fi;
add((-1)^j*(2*k)/(2*k-j)*binomial(2*k-j, j)*t(n, k-j), j=0 ..k) end:
seq(lprint(seq(T(n, k), k=0..7)), n=0..7); # Peter Luschny, Jul 22 2020
PROG
(Sage)
def f(k, n):
return sum((-1)^j*binomial(k, j)*factorial(n+k-j) for j in range(0, k+1))
def T(k, n):
if n==0:
return 2*f(k, 0)
else:
return sum((-1)^j*(2*n)/(2*n-j)*binomial(2*n-j, j)*f(k, n-j) for j in range(0, n+1))
(PARI)
f(k, n) = sum(j=0, k, (-1)^j*binomial(k, j)*(n+k-j)!);
T(k, n) = if (n==0, 2*f(k, 0), sum(j=0, n, (-1)^j*(2*n)/(2*n-j)*binomial(2*n-j, j)*f(k, n-j)));
matrix(7, 7, n, k, T(n-1, k-1))
\\ Michel Marcus, Jun 26 2020
CROSSREFS
KEYWORD
AUTHOR
William P. Orrick, Jun 04 2020
STATUS
approved