login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335390
a(n) = Sum_{k=0..n} Stirling2(n,k) * 2^binomial(k,2).
1
1, 1, 3, 15, 127, 1895, 53071, 2953575, 337064047, 79446381319, 38491200186831, 38046637826801703, 76226441027901385519, 308075833912652114006087, 2503633988838391023366024079, 40826169678526460459483237927271, 1334110729147927667553970495057395439
OFFSET
0,3
COMMENTS
Stirling transform of A006125.
LINKS
FORMULA
G.f.: Sum_{k>=0} 2^binomial(k,2) * x^k / Product_{j=1..k} (1 - j*x).
E.g.f.: Sum_{k>=0} 2^binomial(k,2) * (exp(x) - 1)^k / k!.
a(n) ~ 2^(n*(n-1)/2). - Vaclav Kotesovec, Jun 05 2020
MAPLE
a:= n-> add(Stirling2(n, k)*2^(k*(k-1)/2), k=0..n):
seq(a(n), n=0..19); # Alois P. Heinz, Jun 05 2020
MATHEMATICA
Table[Sum[StirlingS2[n, k] 2^Binomial[k, 2], {k, 0, n}], {n, 0, 16}]
PROG
(PARI) a(n) = sum(k=0, n, stirling(n, k, 2) * 2^binomial(k, 2)); \\ Michel Marcus, Jun 05 2020
CROSSREFS
Sequence in context: A135255 A182489 A330804 * A075475 A074241 A228365
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 04 2020
STATUS
approved